×

Meshfree modelling of fracture – a comparative study of different methods. (English) Zbl 1271.74427

Summary: Different fracture methods in meshfree methods are studied and compared. Our studies focuses on the elementfree Galerkin (EFG) method though similar results were obtained with SPH and MPM. Three major fracture approaches are tested: Natural fracture, smeared crack method and discrete crack method. In the latter method, the crack is represented as continuous line and as set of discrete crack segment. Natural fracture is a key feature of meshfree methods. In some numerical examples, we will show that natural fracture criterion cannot handle even simple fracture adequately. Moreover, we will show in our numerical examples that smeared crack models can capture global behavior appropriately for simple examples but not for complex examples involving branching cracks. The most accurate methods are discrete fracture methods.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74R10 Brittle fracture
Full Text: DOI

References:

[1] Lucy L (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013-1024 · doi:10.1086/112164
[2] Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179-196 · Zbl 0851.73078 · doi:10.1016/0045-7825(94)90112-0
[3] Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229-256 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[4] Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20:1081-1106 · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[5] Randles PW, Libersky L (2000) Normalized sph with stress points. Int J Numer Methods Eng 48:1445-1461 · Zbl 0963.74079 · doi:10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
[6] Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375-408 · Zbl 0896.73075 · doi:10.1016/S0045-7825(96)01090-0
[7] Randles PW, Libersky LD (1997) Recent improvements in sph modeling of hypervelocity impact. Int J Impact Eng 20:525-532 · doi:10.1016/S0734-743X(97)87441-6
[8] Randles PW, Carney TC, Libersky LD (1995) Sph simulation of fragmentation in the mk82 bomb. Shock Compress Condens Matter 370:331-334 · doi:10.1063/1.50717
[9] Randles PW, Carney TC, Libersky LD (1995) Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics. Int J Impact Eng 17:661-672 · doi:10.1016/0734-743X(95)99889-Y
[10] Rabczuk T, Eibl J (2003) Simulation of high velocity concrete fragmentation using sph/mlsph. Int J Numer Methods Eng 56:1421-1444 · Zbl 1106.74428 · doi:10.1002/nme.617
[11] Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2d and 3d. Int J Numer Methods Eng 63(11):1559-1582 · Zbl 1145.74041 · doi:10.1002/nme.1326
[12] Rabczuk T (2006) Modelling dynamic failure of concrete with meshfree methods. Int J Impact Eng 32(11):1878-1897 · doi:10.1016/j.ijimpeng.2005.02.008
[13] Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193:1035-1063 · Zbl 1060.74672 · doi:10.1016/j.cma.2003.12.005
[14] Vignjevic R, Reveles JR, Campbell J (2006) Sph in a total Lagrangian formalism. Comput Model Eng Sci 14(3):181-198 · Zbl 1357.76072
[15] Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshfree particle methods. Int J Numer Methods Eng 48:1359-1400 · Zbl 0972.74078 · doi:10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
[16] Belytschko T, Lu YY (1995) Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547-2570 · Zbl 0918.73268 · doi:10.1016/0020-7683(94)00282-2
[17] Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295-315 · doi:10.1016/0013-7944(94)00153-9
[18] Belytschko T, Tabbara M (1996) Dynamic fracture using element-free Galerkin methods. Int J Numer Methods Eng 39(6):923-938 · Zbl 0953.74077 · doi:10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
[19] Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3-47 · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[20] Hao S, Liu WK, Klein PA, Rosakis AJ (2004) Modeling and simulation of intersonic crack growth. Int J Solids Struct 41(7):1773-1799 · Zbl 1045.74588 · doi:10.1016/j.ijsolstr.2003.10.025
[21] Krysl P, Belytschko T (1999) The efgm for dynamic propagation of arbitrary three-dimensional cracks. Int J Numer Methods Eng 44(6):767-800 · Zbl 0953.74078 · doi:10.1002/(SICI)1097-0207(19990228)44:6<767::AID-NME524>3.0.CO;2-G
[22] Belytschko T, Chen H, Xu J, Zi G (2001) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873-1905 · Zbl 1032.74662 · doi:10.1002/nme.941
[23] Song J-H, Areais PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868-893 · Zbl 1113.74078 · doi:10.1002/nme.1652
[24] Rabczuk T, Gracie R, Song J-H, Belytschko T (2010) Immersed particle method for fluid-structure interaction. Int J Numer Methods Eng 81:48-71 · Zbl 1183.74367
[25] Ventura G, Xu J, Belytschko T (2002) A vector level set method and new discontinuity approximation for crack growth by efg. Int J Numer Methods Eng 54(6):923-944 · Zbl 1034.74053 · doi:10.1002/nme.471
[26] Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40:1483-1504 · doi:10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
[27] Belytschko T, Fleming M (1999) Smoothing, enrichment and contact in the element free Galerkin method. Comput Struct 71:173-195 · doi:10.1016/S0045-7949(98)00205-3
[28] Zi G, Rabczuk T, Wall W (2007) Extended meshfree methods without branch enrichment for cohesive cracks. Comput Mech 40(2):367-382 · Zbl 1162.74053 · doi:10.1007/s00466-006-0115-0
[29] Rabczuk T, Belytschko T (2006) Application of particle methods to static fracture of reinforced concrete structures. Int J Fract 137(14):19-49 · Zbl 1197.74175 · doi:10.1007/s10704-005-3075-z
[30] Rabczuk T, Areias P (2006) A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Comput Model Eng Sci 16(2):115-130
[31] Rabczuk T, Bordas S, Zi G (2007) A three dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity. Comput Mech 40(3):473-495 · Zbl 1161.74054 · doi:10.1007/s00466-006-0122-1
[32] Rabczuk T, Areias PMA, Belytschko T (2007) A simplified meshfree method for shear bands with cohesive surfaces. Int J Numer Methods Eng 69:993-1021 · Zbl 1194.74536 · doi:10.1002/nme.1797
[33] Rabczuk T, Areias PMA, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72(5):524-548 · Zbl 1194.74537 · doi:10.1002/nme.2013
[34] Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(2930):2777-2799 · Zbl 1128.74051 · doi:10.1016/j.cma.2006.06.020
[35] Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2008) A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Eng Fract Mech 75:4740-4758 · doi:10.1016/j.engfracmech.2008.06.019
[36] Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763-813 · Zbl 1152.74055 · doi:10.1016/j.matcom.2008.01.003
[37] Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316-2343 · Zbl 1075.74703 · doi:10.1002/nme.1151
[38] Beissel S, Belytschko T (1996) Nodal integration in the elementfree Galerking method. Comput Methods Appl Mech Eng 138:49-74 · Zbl 0918.73329 · doi:10.1016/S0045-7825(96)01079-1
[39] Vignjevic R, Reveles JR, Campbell J (2006) Sph in a total Lagrangian formalism. Comput Model Eng Sci 14:181-198 · Zbl 1357.76072
[40] Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in sph with applications in fluid flow problems. Int J Numer Methods Eng 72(3):295-324 · Zbl 1194.76229 · doi:10.1002/nme.2010
[41] Dyka CT, Ingel RP (1995) An approach for tensile instability in SPH. Comput Struct 57:573-580 · Zbl 0900.73945 · doi:10.1016/0045-7949(95)00059-P
[42] Bazant ZP, Belytschko T (1985) Wave propagation in a strain softening bar: exact solution. J Eng Mech ASCE 11:381-389 · doi:10.1061/(ASCE)0733-9399(1985)111:3(381)
[43] Bazant ZP, Oh BH (1983) Crack band theory for fracture in concrete. Mater Struct 16:155-177
[44] Sun Y, Hu YG, Liew KM (2007) A mesh-free simulation of cracking and failure using the cohesive segments method. Int J Eng Sci 45:541-553 · Zbl 1213.74312 · doi:10.1016/j.ijengsci.2007.03.004
[45] Wang HX, Wang SX (2008) Analysis of dynamic fracture with cohesive crack segment method. Comput Model Eng Sci 35(3):253-274 · Zbl 1153.74373
[46] Arrea M, Ingraffea AR Mixed-mode crack propagation in mortar and concrete. Technical report 81-13, Department of Structural Engineering, Cornell University New York, 1982
[47] Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397-1434 · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5
[48] Zhang YY, Chen L (2008) A simplified meshless method for dynamic crack growth. Comput Model Eng Sci 31:189-199 · Zbl 1232.74135
[49] Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6):743-760 · Zbl 1161.74055 · doi:10.1007/s00466-006-0067-4
[50] Sharon E, Gross PSP, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74:5096-5099 · doi:10.1103/PhysRevLett.74.5096
[51] Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fract 90:83-102 · doi:10.1023/A:1007432017290
[52] Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196:2777-2799 · Zbl 1128.74051 · doi:10.1016/j.cma.2006.06.020
[53] Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. Int Conf Impact Load Dyn Behav Mater 1:185-195
[54] Rabczuk T, Zi G, Gerstenberger A, Wall WA (2008) A new crack tip element for the phantom node method with arbitrary cohesive cracks. Int J Numer Methods Eng 75:577-599 · Zbl 1195.74193 · doi:10.1002/nme.2273
[55] Ravi-Chandar K, Lu J, Yang B, Zhu Z (2000) Failure modes transitions in polymers under high strain rate loading. Int J Fract 101:33-72 · doi:10.1023/A:1007581101315
[56] Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199:2437-2455 · Zbl 1231.74493 · doi:10.1016/j.cma.2010.03.031
[57] Batra RC, Gummalla RR (2000) Effect on material and geometric parameters on deformations near the notch-tip of a dynamically loaded prenotched plate. Int J Fract 101(99-140)
[58] Batra RC, Ravisankar MVS (2000) Three-dimensional numerical simulation of the Kalthoff experiment. Int J Fract 105(161-186) · Zbl 0963.74079
[59] Zhou M, Ravichandran G, Rosakis A (1996) Dynamically propagating shear bands in impact-loaded prenotched plates—I. J Mech Phys Solids 44:981-1006 · doi:10.1016/0022-5096(96)00003-8
[60] Zhou M, Ravichandran G, Rosakis A (2000) Dynamically propagating shear bands in impact-loaded prenotched plates—II. J Mech Phys Solids 44 (1007-1032)
[61] Rabczuk T, Samaniego E (2008) Discontinuous modelling of shear bands using adaptive meshfree methods. Comput Methods Appl Mech Eng 197:641-658 · Zbl 1169.74655 · doi:10.1016/j.cma.2007.08.027
[62] Rabczuk T, Song J-H, Belytschko T (2009) Simulations of instability in dynamic fracture by the cracking particles method. Eng Fract Mech 76:730-741 · doi:10.1016/j.engfracmech.2008.06.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.