×

Coarse coherence of metric spaces and groups and its permanence properties. (English) Zbl 1434.16005

Summary: We introduce properties of metric spaces and, specifically, finitely generated groups with word metrics, which we call coarse coherence and coarse regular coherence. They are geometric counterparts of the classical algebraic notion of coherence and the regular coherence property of groups defined and studied by Waldhausen. The new properties can be defined in the general context of coarse metric geometry and are coarse invariants. In particular, they are quasi-isometry invariants of spaces and groups. The new framework allows us to prove structural results by developing permanence properties, including the particularly important fibering permanence property, for coarse regular coherence.

MSC:

16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
18G99 Homological algebra in category theory, derived categories and functors
54E35 Metric spaces, metrizability
51F99 Metric geometry

References:

[1] Bell, G. C.; Dranishnikov, A. N., A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Amer. Math. Soc., 358, 4749-4764, (2006) · Zbl 1117.20032 · doi:10.1090/S0002-9947-06-04088-8
[2] Carlsson, G.; Goldfarb, B., The integral K-theoretic Novikov conjecture for groups with finite asymptotic dimension, Invent. Math., 157, 405-418, (2004) · Zbl 1071.19003 · doi:10.1007/s00222-003-0356-x
[3] Carlsson, G.; Goldfarb, B., On homological coherence of discrete groups, J. Algebra, 276, 502-514, (2004) · Zbl 1057.22013 · doi:10.1016/j.jalgebra.2004.02.006
[4] Carlsson, G.; Goldfarb, B., Controlled algebraic G-theory, I, J. Homotopy Relat. Struct., 6, 119-159, (2011) · Zbl 1278.19002
[5] Carlsson, G.; Goldfarb, B.
[6] Carlsson, G.; Goldfarb, B., On modules over infinite group rings, Internat. J. Algebra Comput., 26, 451-466, (2016) · Zbl 1354.19001 · doi:10.1142/S0218196716500181
[7] Dranishnikov, A.; Zarichnyi, M., Asymptotic dimension, decomposition complexity, and Haver’s property C, Topology Appl., 169, 99-107, (2014) · Zbl 1297.54064 · doi:10.1016/j.topol.2014.02.035
[8] Goldfarb, B., Weak coherence and the K-theory of groups with finite decomposition complexity, Int. Math. Res. Not. IMRN
[9] Grossman, J. L.
[10] Guentner, E.; Hart, K. P.; Van Mill, J.; Simon, P., Permanence in coarse geometry, Recent Progress in General Topology III, 507-533, (2014), Atlantis Press: Atlantis Press, Paris · Zbl 1300.54003 · doi:10.2991/978-94-6239-024-9_11
[11] Kasprowski, D.; Nicas, A.; Rosenthal, D., Regular finite decomposition complexity, J. Topol. Anal. · Zbl 1515.20250
[12] Kropholler, P. H., On groups of type (FP)_{}, J. Pure Appl. Algebra, 90, 55-67, (1993) · Zbl 0816.20042 · doi:10.1016/0022-4049(93)90136-H
[13] Kropholler, P. H., Modules possessing projective resolutions of finite type, J. Algebra, 216, 40-55, (1999) · Zbl 0931.16005 · doi:10.1006/jabr.1998.7759
[14] Waldhausen, F., Algebraic K-theory of generalized free products, Ann. of Math. (2), 108, 135-256, (1978) · Zbl 0397.18012 · doi:10.2307/1971165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.