×

Finite-time and fixed-time impulsive synchronization of chaotic systems. (English) Zbl 1450.93052

Summary: This paper investigates the finite-time and fixed-time synchronization of chaotic systems with impulsive control method. Based on the theory of impulsive differential system, Lyapunov stability and finite-time control technique, some new sufficient criteria are derived to achieve the finite-time and fixed-time synchronization of chaotic systems. Different from the existing methods of finite-time and fixed-time synchronization scheme, the effective impulsive control protocol is exerted to obtain faster convergence speed and less state information transmission, which is more flexible and practical in real systems. Finally, the simulation is given to illustrate the effectiveness and validity of the theoretical results.

MSC:

93D40 Finite-time stability
93C27 Impulsive control/observation systems
34C28 Complex behavior and chaotic systems of ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
Full Text: DOI

References:

[1] Chen, G.; Dong, X., On feedback control of chaotic continuous time systems, IEEE Trans. Circuits Syst. I, 40, 9, 591-601 (1993) · Zbl 0800.93758
[2] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 8, 821-824 (1990) · Zbl 0938.37019
[3] Park, J. M.; Park, P. G., H∞ sampled-state feedback control for synchronization of chaotic lur’e systems with time delays, J. Frankl. Inst. B, 355, 8005-8026 (2018) · Zbl 1398.93102
[4] Mobayen, S.; Tchier, F., Synchronization of a class of uncertain chaotic systems with lipschitz nonlinearities using state-feedback control design: a matrix inequality approach, Asian J. Control, 20, 1, 71-85 (2018) · Zbl 1458.93205
[5] Tam, L. M.; Chen, H. K.; Li, S. Y., Adaptive synchronization of complicated chaotic systems with uncertainties via fuzzy modeling-based control strategy, Inf. Sci., 427, 18-31 (2018) · Zbl 1447.93182
[6] Xu, Q.; Zhuang, S.; Liu, S.; Xiao, J., Decentralized adaptive coupling synchronization of fractional order complex variable dynamical networks, Neurocomputing, 186, 119-216 (2016)
[7] Sun, G. H.; Wu, L. G.; Kuang, Z. A.; Ma, Z. Q.; Liu, J. X., Practical tracking control of linear motor via fractional-order sliding mode, Automatica, 94, 221-235 (2018) · Zbl 1401.93064
[8] Liu, J. X.; Wu, L. G.; Wu, C. W.; Luo, W. S.; Franquelo, L. G., Event-triggering dissipative control of switched stochastic systems via sliding mode, Automatica, 103, 261-273 (2019) · Zbl 1415.93283
[9] Mohammadpour, S.; Binazadeh, T., Observer-based synchronization of uncertain chaotic systems subject to input saturation, Trans. Inst. Meas. Control, 40, 8, 2526-2535 (2018)
[10] Pourgholi, M.; Boroujeni, E. A., An iterative LMI-based reduced-order observer design for fractional-order chaos synchronization, Circuits Syst. Signal Process., 35, 1855-1870 (2016) · Zbl 1345.93040
[11] Li, T.; Yuan, R. T.; Fei, S. M.; Ding, Z. T., Sampled-data synchronization of chaotic lur’e systems via an adaptive event-triggered approach, Inf. Sci., 462, 40-54 (2018) · Zbl 1448.93189
[12] Kwon, W.; Koo, B.; Lee, S. M., Integral-based event-triggered synchronization criteria for chaotic lur’e systems with networked PD control, Nonlinear Dyn., 94, 991-1002 (2018)
[13] Li, Z. G.; Wen, C. Y.; Soh, Y. C.; Xie, W. X., The stabilization and synchronization of chua’s oscillators via impulsive control, IEEE Trans. Circuits Syst. I, 48, 11, 1351-1355 (2001) · Zbl 1024.93052
[14] Sun, J. T.; Zhang, Y. P., Impulsive control and synchronization of chua’s oscillators, Math. Comput. Simulat., 66, 499-508 (2004) · Zbl 1113.93088
[15] Ma, T. D.; Yu, T. T.; Cui, B., Adaptive synchronization of multi-agent systems via variable impulsive control, J. Frankl. Inst. B, 355, 15, 7490-7508 (2018) · Zbl 1398.93021
[16] Li, M.; Li, X.; Han, X.; Qiu, J., Leader-following synchronization of coupled time-delay neural networks via delayed impulsive control, Neurocomputing, 357, 101-107 (2019)
[17] Ma, T. D.; Zhang, Z. L.; Cui, B., Variable impulsive consensus of nonlinear multi-agent systems, Nonlinear Anal. Hybrid Syst., 31, 1-18 (2019) · Zbl 1408.93013
[18] Han, Y. Y.; Li, C. D.; Zeng, Z. G.; Li, H. F., Exponential consensus of discrete-time non-linear multi-agent systems via relative state-dependent impulsive protocols, Neural Netw., 108, 192-201 (2018) · Zbl 1441.93270
[19] T.D. Ma, B. Cui, Y.J. Wang, K. Liu, Stochastic synchronization of delayed multi-agent networks with intermittent communications: an impulsive framework, Int. J. Robust Nonlinear Control, doi:10.1002/rnc.4637. · Zbl 1426.93354
[20] Perruquetti, W.; Floquet, T.; Moulay, E., Finite-time observers: application to secure communication, IEEE Trans. Autom. Control, 53, 1, 356-360 (2008) · Zbl 1367.94361
[21] Wang, H.; Ye, J. M.; Miao, Z. H.; Jonckheere, E. A., Robust finite-time chaos synchronization of time-delay chaotic systems and its application in secure communication, Trans. Inst. Meas. Control, 40, 4, 1177-1187 (2018)
[22] Vaseghi, B.; Pourmina, M. A.; Mobayen, S., Finite-time chaos synchronization and its application in wireless sensor networks, Trans. Inst. Meas. Control, 40, 13, 3788-3799 (2018)
[23] Zhang, D. Y.; Mei, J.; Miao, P., Global finite-time synchronization of different dimensional chaotic systems, Appl. Math. Modell., 48, 303-315 (2017) · Zbl 1480.34072
[24] Yang, X. S.; Lu, J. Q., Finite-time synchronization of coupled networks with Markovian topology and impulsive effects, IEEE Trans. Autom. Control, 61, 8, 2256-2261 (2016) · Zbl 1359.93459
[25] Syed Ali, M.; Yogambigai, J., Finite-time robust stochastic synchronization of uncertain Markovian complex dynamical networks with mixed time-varying delays and reaction-diffusion terms via impulsive control, J. Frankl. Inst. B, 354, 2415-2436 (2017) · Zbl 1398.93032
[26] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57, 8, 2106-2110 (2012) · Zbl 1369.93128
[27] Xu, Z. Q.; Li, C. D.; Han, Y. Y., Leader-following fixed-time quantized consensus of multi-agent systems via impulsive control, J. Frankl. Inst. B, 356, 441-456 (2019) · Zbl 1405.93010
[28] Deng, Q.; Wu, J.; Han, T.; Yang, Q. S.; Cai, X. S., Fixed-time bipartite consensus of multi-agent systems with disturbances, Phys. A, 516, 37-49 (2019) · Zbl 1514.93024
[29] Shi, X. C.; Lu, J. Q.; Liu, Y.; Huang, T. W.; Alssadi, F. E., A new class of fixed-time bipartite consensus protocols for multi-agent systems with antagonistic interactions, J. Frankl. Inst. B, 355, 12, 5256-5271 (2018) · Zbl 1395.93069
[30] Wang, L. L.; Chen, T. P., Finite-time and fixed-time anti-synchronization of neural networks with time-varying delays, Neurocomputing, 329, 165-171 (2019)
[31] Chen, C.; Li, L. X.; Peng, H. P.; Yang, Y. X., Fixed-time synchronization of inertial memristor-based neural networks with discrete delay, Neural Netw., 109, 81-89 (2019) · Zbl 1441.93278
[32] Yang, X. S.; Lam, J.; Ho, D. W.C.; Feng, Z. G., Fixed-time synchronization of complex networks with impulsive effects via nonchattering control, IEEE Trans. Autom. Control, 62, 11, 5511-5521 (2017) · Zbl 1390.93393
[33] Ji, G. J.; Hu, C.; Yu, J.; Jiang, H. J., Finite-time and fixed-time synchronization of discontinuous complex networks: a unified control framework design, J. Franklin Inst. B, 355, 4665-4685 (2018) · Zbl 1390.93105
[34] Bhat, S.; Bernstein, D., Finite time stability of continuous autonomous systems, SIAM J. Control Optim., 38, 3, 751-766 (2000) · Zbl 0945.34039
[35] Li, H. F.; Li, C. D.; Huang, T. W.; Zhang, W. L., Fixed-time stabilization of impulsive Cohen-Grossberg BAM neural networks, Neural Netw., 98, 203-211 (2018) · Zbl 1441.93204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.