×

Global finite-time synchronization of different dimensional chaotic systems. (English) Zbl 1480.34072

Summary: This paper addresses the problem of global finite-time synchronization of two different dimensional chaotic systems. Firstly, the definition of global finite-time synchronization of different dimensional chaotic systems are introduced. Based on the finite-time stability methods, the controller is designed such that the chaotic systems are globally synchronized in a finite time. Then, some uncertain parameters are adopted in the chaotic systems, new control law and dynamical parameter estimation are proposed to guarantee that the global finite-time synchronization can be obtained. By considering a dynamical parameter designed in the controller, the adaptive updated controller is also designed to achieve the desired results. At last, the results of two different dimensional chaotic systems are also extended to two different dimensional networked chaotic systems. Finally, three numerical examples are given to verify the validity of the proposed methods.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93A14 Decentralized systems
93C40 Adaptive control/observation systems

References:

[1] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-824 (1990) · Zbl 0938.37019
[2] Arenas, A.; Diaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys. Rep., 469, 93-153 (2008)
[3] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12 (2001), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0993.37002
[4] Strogata, S. H., Exploring complex networks, Nature, 410, 6825, 268-276 (2001) · Zbl 1370.90052
[5] Wang, X.; Chen, G., Synchronization in small-world dynamical networks, Int. J. Bifurc. Chaos, 12, 1, 187-192 (2002)
[6] Wu, C., Synchronization in Complex Networks of Nonlinear Dynamical Systems (2007), World Scientific: World Scientific Singapore · Zbl 1135.34002
[7] Zhang, Q.; Lu, J.; Lü, J.; Tse, C. K., Adaptive feedback synchronization of a general complex dynamical network with delayed nodes, IEEE Trans. Circuit Syst., 55, 183-187 (2008)
[8] Pecora, L. M.; Carrol, T. L.; Johnson, G. A., Fundamentals of synchronization in chaotic systems, concepts, and applications, Chaos, 7, 520-543 (1998) · Zbl 0933.37030
[9] Chen, G.; Dong, X., From Chaos to Order: Methodologies, Perspectives, and Applications (1998), World Scientific: World Scientific Singapore · Zbl 0908.93005
[10] Lu, J.; Ho, D. W.C.; Cao, J., A unified synchronization criterion for impulsive dynamical networks, Automatica, 46, 1215-1221 (2010) · Zbl 1194.93090
[11] Yang, X.; Cao, J.; Lu, J., Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control, IEEE Trans. Circuit Syst., 59, 371-384 (2012) · Zbl 1468.93022
[12] Wang, X.; Chen, G., Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans. Circuit Syst., 49, 54-62 (2002) · Zbl 1368.93576
[13] Chen, L.; Lu, J., Cluster synchronization in a complex dynamical network with two nonidentical clusters, J. Syst. Sci. Complex., 21, 20-33 (2008) · Zbl 1172.93002
[14] Wu, W.; Zhou, W.; Chen, T., Cluster synchronization of linearly coupled complex networks under pinning control, IEEE Trans. Circuit Syst., 56, 829-839 (2009) · Zbl 1468.93140
[15] Yu, J.; Hu, C.; Jiang, H.; Fan, X., Projective synchronization for fractional neural networks, Neural Netw., 49, 87-95 (2014) · Zbl 1296.34133
[16] Guan, S.; Lai, C.; Wei, G., Phase synchronization between two essentially different chaotic systems, Phys. Rev. E, 72, 016205-1-8 (2005)
[17] Li, H.; Jiang, Y.; Wang, Z., Anti-synchronization and intermittent anti-synchronization of two identical hyperchaotic Chua systems via impulsive control, Nonlin. Dyn., 79, 919-925 (2015) · Zbl 1345.34095
[18] Zhang, G.; Liu, Z.; Ma, Z., Generalized synchronization of different dimensional chaotic dynamical systems, Chaos Solitons Fractals, 32, 773-779 (2007) · Zbl 1138.37316
[19] Stefanovska, A.; Haken, H.; McClintock, P. V.; Hožič, M.; Bajrović, F.; Ribarič, S., Reversible transitions between synchronization states of the cardiorespiratory system, Phys. Rev. Lett., 85, 4831-4834 (2000)
[20] Alvarez, G.; Hernández, L.; noz, J. M.; Montoya, F.; Li, S., Security analysis of communication system based on the synchronization of different order chaotic systems, Phys. Lett. A, 345, 245-250 (2005) · Zbl 1345.94032
[21] Bowong, S., Stability analysis for the synchronization of chaotic systems with different order: application to secure communications, Phys. Lett. A, 326, 102-113 (2004) · Zbl 1161.94389
[22] Ho, M. C.; Hung, Y. C.; Liu, Z.; Jiang, I., Reduced-order synchronization of chaotic systems with parameters unknown, Phys. Lett. A, 348, 251-259 (2006)
[23] Vincent, U. E.; Guo, R., A simple adaptive control for full and reduced-order synchronization of uncertain time-varying chaotic systems, Commun. Nonlin. Sci. Numer. Simul., 14, 3925-3932 (2009) · Zbl 1221.93134
[24] Ge, Z.; H., C., The generalized synchronization of a quantum-CNN chaotic oscillator with different order systems, Chaos Solitons Fractals, 35, 980-990 (2008) · Zbl 1141.37017
[25] Ricardo, F.; Gualberto, S. P., Synchronization of chaotic systems with different order, Phys. Rev. E, 65, 036226 (2002)
[26] Bowong, S.; McClintock, P. V.E., Adaptive synchronization between chaotic dynamical systems of different order, Phys. Lett. A, 358, 134-141 (2006) · Zbl 1142.93405
[27] Cai, N.; Li, W.; Jing, Y., Finite-time generalized synchronization of chaotic systems with different order, Nonlin. Dyn., 64, 385-393 (2011)
[28] Zhao, J.; Wu, Y.; Wang, Y., Generalized finite-time synchronization between coupled chaotic systems of different orders with unknown parameters, Nonlin. Dyn., 74, 479-485 (2013) · Zbl 1279.34062
[29] Wang, H.; Han, Z., Finite-time chaos synchronization of unified chaotic systems with uncertain parameters, Commun. Nonlin. Sci. Numer. Simul., 14, 2239-2247 (2009)
[30] Tang, Y., Terminal sliding mode control for rigid robots, Automatica, 34, 51-56 (1998) · Zbl 0908.93042
[31] Bhat, S.; Bernstein, D., Finite-time stability of homogeneous systems, Proceedings of the American Control Conference (ACC), 2513-2514 (1997), Albuquerque, NM
[32] Perruquetti, W.; Floquet, T.; Moulay, E., Finite-time observers: application to secure communication, IEEE Trans. Autom. Control, 53, 356-360 (2008) · Zbl 1367.94361
[33] Millerious, G.; Mira, C., Finite-time global chaos synchronization for piecewise linear maps, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 48, 111-116 (2001) · Zbl 1011.37059
[34] Li, S.; Tian, Y., Finite time synchronization of chaotic systems, Chaos Solitons Fractals, 15, 303-310 (2003) · Zbl 1038.37504
[35] Ahmad, I.; Shafiq, M.; Saaban, A. B.; Ibrahim, A. B.; Shahzad, M., Robust finite-time global synchronization of chaotic systems with different orders, Optik, 127, 8127-8185 (2016)
[36] Shen, Y.; Huang, Y., Global finite-time stabilisation for a class of nonlinear systems, Int. J. Syst. Sci., 43, 73-78 (2012) · Zbl 1259.93098
[37] Shen, Y.; Shen, W.; Jiang, M.; Huang, Y., Semi-global finite-time observers for multioutput nonlinear systems, Int. J. Robust Nonlin. Control, 20, 789-801 (2010) · Zbl 1298.93091
[38] Huang, X.; Lin, W.; Yang, B., Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica, 41, 881-888 (2005) · Zbl 1098.93032
[39] Shen, Y.; Huang, Y.; Gu, J., Global finite-time observers for Lipschtiz nonlinear systems, IEEE Trans. Autom. Control, 56, 418-424 (2011) · Zbl 1368.93057
[40] Zhang, D.; Shen, Y.; Mei, J., Finite-time synchronization of multi-layer nonlinear coupled complex networks via intermittent feedback control, Neurocomputing, 225, 129-138 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.