×

Some new Gompertz fractional difference equations. (English) Zbl 1467.39004

Summary: We introduce three new fractional Gompertz difference equations using the Riemann-Liouville discrete fractional calculus. These three models are based a nonfractional Gompertz difference equation, and they differ depending on whether a fractional operator replaces the difference operator, the integral operator defining the logarithm, or both simultaneously. An explicit solution to one of them is achieved with restricted parameters and recurrence relation solutions are derived for all three. Finally, we fit these models to data to compare them with a previously published discrete fractional Gompertz model and the continuous model.

MSC:

39A13 Difference equations, scaling (\(q\)-differences)
39A12 Discrete version of topics in analysis
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] 10.1016/j.camwa.2011.03.036 · Zbl 1228.26008 · doi:10.1016/j.camwa.2011.03.036
[2] 10.1371/journal.pone.0230582 · doi:10.1371/journal.pone.0230582
[3] 10.1016/j.livsci.2018.12.023 · doi:10.1016/j.livsci.2018.12.023
[4] 10.1090/S0002-9939-08-09626-3 · Zbl 1166.39005 · doi:10.1090/S0002-9939-08-09626-3
[5] 10.3233/FI-2017-1494 · Zbl 1378.92026 · doi:10.3233/FI-2017-1494
[6] 10.1080/10236190500376284 · Zbl 1088.39013 · doi:10.1080/10236190500376284
[7] 10.1007/978-1-4612-0201-1 · doi:10.1007/978-1-4612-0201-1
[8] 10.1093/imammb/dqt024 · Zbl 1350.92023 · doi:10.1093/imammb/dqt024
[9] 10.18576/amis/140102 · doi:10.18576/amis/140102
[10] 10.2478/v10175-010-0059-6 · Zbl 1220.80006 · doi:10.2478/v10175-010-0059-6
[11] 10.1006/jtbi.1998.0812 · doi:10.1006/jtbi.1998.0812
[12] 10.1080/10236198.2012.682577 · Zbl 1276.26013 · doi:10.1080/10236198.2012.682577
[13] 10.1016/j.cnsns.2019.03.024 · Zbl 1464.92009 · doi:10.1016/j.cnsns.2019.03.024
[14] 10.1098/rstl.1825.0026 · doi:10.1098/rstl.1825.0026
[15] 10.1007/978-3-319-25562-0 · Zbl 1350.39001 · doi:10.1007/978-3-319-25562-0
[16] 10.3996/092015-JFWM-091 · doi:10.3996/092015-JFWM-091
[17] 10.1590/0103-8478cr20190408 · doi:10.1590/0103-8478cr20190408
[18] 10.1007/978-1-4419-5783-2 · Zbl 1201.34001 · doi:10.1007/978-1-4419-5783-2
[19] 10.1112/plms/s3-7.1.453 · Zbl 0078.05101 · doi:10.1112/plms/s3-7.1.453
[20] 10.1038/bjc.1964.55 · doi:10.1038/bjc.1964.55
[21] ; Miller, Univalent functions, fractional calculus, and their applications, 139 (1989)
[22] 10.1007/BF00340079 · doi:10.1007/BF00340079
[23] ; Length-based methods in fisheries research. ICLARM Conference Proceedings, 13 (1987)
[24] 10.5539/jas.v11n14p83 · doi:10.5539/jas.v11n14p83
[25] 10.1007/BFb0067096 · doi:10.1007/BFb0067096
[26] ; Satoh, IEICE Trans. Info. Sys., E83-D, 1508 (2000)
[27] ; Solís-Pérez, Fractional derivatives with Mittag-Leffler kernel. Stud. Syst. Decis. Control, 194, 81 (2019)
[28] 10.1186/1687-1847-2014-253 · Zbl 1343.39017 · doi:10.1186/1687-1847-2014-253
[29] 10.1073/pnas.18.1.1 · JFM 58.0572.01 · doi:10.1073/pnas.18.1.1
[30] 10.1007/s11071-014-1867-2 · Zbl 1345.65067 · doi:10.1007/s11071-014-1867-2
[31] 10.1002/ece3.5358 · doi:10.1002/ece3.5358
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.