×

Simulating high-Mach-number compressible flows with shock waves via Hermite-expansion-based lattice Boltzmann method. (English) Zbl 07570051

Summary: In this paper, high-Mach-number compressible flows with shock waves are successfully simulated by Hermite-expansion-based lattice Boltzmann (LB) method proposed in the framework of the double-distribution-function approach. In the method, the discrete equilibrium distribution functions are obtained from the Hermite expansions of the continuous equilibrium distribution functions, and the discrete velocity sets are obtained by choosing the abscissas of suitable Gauss-Hermite quadratures with sufficient accuracy. Numerical simulations are carried out for some high-Mach-number compressible flows with shock waves in one and two dimensions. The numerical results are found to be in good agreement with the analytical solutions and/or other numerical results reported in the literature. The complex flow structures such as the contact discontinuities and interactions between the shock waves are well captured by the Hermite-expansion-based LB method.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] McNamara, G. R.; Zanetti, G., Phys. Rev. Lett., 61, 20, 2332 (1988)
[2] Chen, S.; Chen, H. D.; Martinez, D.; Matthaeus, W., Phys. Rev. Lett., 67, 27, 3776 (1991)
[3] Qian, Y. H.; d’Humières, D.; Lallemand, P., Europhys. Lett., 17, 479 (1992) · Zbl 1116.76419
[4] Frisch, U.; Hasslacher, B.; Pomeau, Y., Phys. Rev. Lett., 56, 14, 1505 (1986)
[5] Chen, S.; Doolen, G. D., Annu. Rev. Fluid Mech., 30, 329 (1998) · Zbl 1398.76180
[6] Succi, S., Eur. Phys. J. B, 64, 3, 471 (2008)
[7] Mohamad, A. A., Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes (2011), Springer Science & Business Media · Zbl 1247.80003
[8] Xu, A.; Shyy, W.; Zhao, T., Acta Mech. Sin., 33, 3, 555 (2017) · Zbl 1372.76084
[9] Ma, Q.; Chen, Z.; Liu, H., Phys. Rev. E, 96, 1, Article 013313 pp. (2017)
[10] Gao, D.; Tian, F. B.; Chen, Z.; Zhang, D., Int. J. Heat Mass Transfer, 110, 58 (2017)
[11] Liu, Q.; Feng, X. B.; He, Y. L.; Lu, C. W.; Gu, Q. H., Appl. Therm. Eng., 152, 319 (2019)
[12] Yan, G.; Chen, Y.; Hu, S., Phys. Rev. E, 59, 454 (1999)
[13] Hinton, F. L.; Rosenbluth, M. N.; Wong, S. K.; Lin-Liu, Y. R.; Miller, R. L., Phys. Rev. E, 63, Article 061212 pp. (2001)
[14] Shi, W.; Shyy, W.; Mei, R., Numer. Heat Transfer B, 40, 1 (2001)
[15] Kataoka, T.; Tsutahara, M., Phys. Rev. E, 69, Article 056702 pp. (2004)
[16] Qu, K.; Shu, C.; Chew, Y. T., Phys. Rev. E, 75, Article 036706 pp. (2007)
[17] Li, Q.; He, Y. L.; Wang, Y.; Tang, G. H., Phys. Lett. A, 373, 2101 (2009) · Zbl 1229.76090
[18] Renda, A.; Bella, G.; Succi, S.; Karlin, I. V., Europhys. Lett., 41, 279 (1998)
[19] Sun, C., Phys. Rev. E, 58, 7283 (1998)
[20] Sun, C.; Hsu, A. T., Phys. Rev. E, 68, Article 016303 pp. (2003)
[21] Gan, Y.; Xu, A.; Zhang, G.; Yu, X.; Li, Y., Physica A, 387, 1721 (2008)
[22] Wang, Y.; He, Y. L.; Li, Q.; Tang, G. H.; Tao, W. Q., Internat. J. Modern Phys. C, 17, 383 (2008)
[23] Li, Q.; He, Y. L.; Wang, Y.; Tao, W. Q., Phys. Rev. E, 76, Article 056705 pp. (2007)
[24] He, X.; Chen, S.; Doolen, G. D., J. Comput. Phys., 146, 282 (1998) · Zbl 0919.76068
[25] He, X.; Luo, L.-S., Phys. Rev. E, 55, R6333 (1997)
[26] He, X.; Luo, L.-S., Phys. Rev. E, 56, 6881 (1997)
[27] Shan, X.; He, X., Phys. Rev. Lett., 80, 65 (1998)
[28] Shan, X.; Yuan, X.-F.; Chen, H., J. Fluid Mech., 550, 413 (2006) · Zbl 1097.76061
[29] Li, Q.; Luo, K. H.; He, Y. L.; Gao, Y. J.; Tao, W. Q., Phys. Rev. E, 85, Article 016710 pp. (2012)
[30] Guo, Z.; Zheng, C.; Shi, B.; Zhao, T. S., Phys. Rev. E, 75, Article 036704 pp. (2007)
[31] Zhang, H. X., Acta Aerodyn. Sin., 6, 143 (1988), (in Chinese)
[32] He, Y. L.; Liu, Q.; Li, Q., Physica A, 392, 4884 (2013) · Zbl 1395.76050
[33] Colella, P., J. Comput. Phys., 87, 171 (1990) · Zbl 0694.65041
[34] Sun, C.; Hsu, A. T., Comput. Fluids, 33, 1363 (2004) · Zbl 1113.76435
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.