×

Nonemptiness and boundedness of solution sets for vector variational inequalities via topological method. (English) Zbl 1322.49011

Summary: In this paper, some characterizations of nonemptiness and boundedness of solution sets for vector variational inequalities are studied in finite and infinite dimensional spaces, respectively. By using a new proof method which is different from the one used in [X. X. Huang et al., J. Optim. Theory Appl. 162, No. 2, 548–558 (2014; Zbl 1315.90055)], a sufficient and necessary condition for the nonemptiness and boundedness of solution sets is established. Based on this result, some new characterizations of nonemptiness and boundedness of solution sets for vector variational inequalities are proved. Compared with the known results in [loc. cit.], the key assumption that \(K_\infty\cap (F(K))^{w\circ}_C=\{0\}\) is not required in finite dimensional spaces. Furthermore, the corresponding result of [loc. cit.] is extended to the case of infinite dimensional spaces. Some examples are also given to illustrate the main results.

MSC:

49J40 Variational inequalities
47J20 Variational and other types of inequalities involving nonlinear operators (general)
47H05 Monotone operators and generalizations
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)

Citations:

Zbl 1315.90055
Full Text: DOI

References:

[1] Huang, X.X., Fang, Y.P., Yang, X.Q.: Characterizing the nonemptiness and compactness of the solution set of a vector variational inequality by scalarization. J. Optim. Theory Appl. 162, 548-558 (2014) · Zbl 1315.90055 · doi:10.1007/s10957-012-0224-1
[2] Giannessi, F.; Cottle, RW (ed.); Giannessi, F. (ed.); Lions, JC (ed.), Theorems of alternative, quadratic program and complementarity problems (1980), New York
[3] Ansari, Q.H., Yao, J.C.: Recent Developments in Vector Optimization. Springer, Berlin (2012) · Zbl 1223.90006 · doi:10.1007/978-3-642-21114-0
[4] Chen, G.Y.: Existence of solutions for a vector variational inequality: an extension of the Hartman-Stampacchia theorem. J. Optim. Theory Appl. 74, 445-456 (1992) · Zbl 0795.49010 · doi:10.1007/BF00940320
[5] Chen, G.Y., Li, S.J.: Existence of solutions for a generalized quasi-vector variational inequality. J. Optim. Theory Appl. 90, 321-334 (1996) · Zbl 0869.49005 · doi:10.1007/BF02190001
[6] Chen, G.Y., Huang, X.X., Yang, X.Q.: Vector optimization: set-valued and variational analysis. In: Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (2005) · Zbl 1104.90044
[7] Lee, G.M., Kim, D.S., Lee, B.S., Yen, N.D.: Vector variational inequalities as a tool for studying vector optimization problems. Nonlinear Anal. TMA 34, 745-765 (1998) · Zbl 0956.49007 · doi:10.1016/S0362-546X(97)00578-6
[8] Giannessi, F.; Mastronei, G.; Pellegrini, L.; Giannessi, F. (ed.), On the theory of vector optimization and variational inequalities (1999), Dordrecht
[9] Hu, R., Fang, Y.P.: On the nonemptiness and compactness of the solution sets for vector variational inequalities. Optimization 59, 1107-1116 (2010) · Zbl 1229.90231 · doi:10.1080/02331930903395600
[10] Deng, S.: Boundedness and nonemptiness of the efficient solution sets in multiobjective optimization. J. Optim. Theory Appl. 144, 29-42 (1998) · Zbl 1188.90232 · doi:10.1007/s10957-009-9589-1
[11] Deng, S.: Characterizations of the nonemptiness and boundedness of weakly efficient solution sets of convex vector optimization problems in real reflexive Banach spaces. J. Optim. Theory Appl. 140, 1-7 (2009) · Zbl 1170.90473 · doi:10.1007/s10957-008-9443-x
[12] Huang, X.X., Yang, X.Q., Teo, K.L.: Characterizing nonemptiness and compactness of the solution set of a convex vector optimization problem with cone constraints and applications. J. Optim. Theory Appl. 123, 391-407 (2004) · doi:10.1007/s10957-004-5155-z
[13] Daniilidis, A., Hadjisavvas, N.: Coercivity conditions and variational inequalities. Math. Program. 86, 433-438 (1999) · Zbl 0937.49003 · doi:10.1007/s101070050097
[14] He, Y.R.: Stable pseudomonotone variational inequality in reflexive Banach spaces. J. Math. Anal. Appl. 330, 352-363 (2007) · Zbl 1124.49005 · doi:10.1016/j.jmaa.2006.07.063
[15] Fan, J.H., Zhong, R.Y.: Stability analysis for variational inequality in reflexive Banach spaces. Nonlinear Anal. TMA 69, 2566-2574 (2008) · Zbl 1172.49010 · doi:10.1016/j.na.2007.08.031
[16] Flores-Bazán, F.: Existence theorems for generalized noncoercive equilibrium problems: the quasiconvex case. SIAM J. Optim. 11, 675-690 (2000) · Zbl 1002.49013 · doi:10.1137/S1052623499364134
[17] Flores-Bazán, F., Flores-Bazán, F.: Vector equilibrium problems under asymptotic analysis. J. Global Optim. 26, 141-166 (2003) · Zbl 1036.90060 · doi:10.1023/A:1023048928834
[18] Flores-Bazán, F., Vera, C.: Characterization of the nonemptiness and compactness of solution sets in convex and nonconvex vector optimization. J. Optim. Theory Appl. 130, 185-207 (2006) · Zbl 1145.90062 · doi:10.1007/s10957-006-9098-4
[19] Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Am. Math. Soc. 123, 46-63 (1966) · Zbl 0145.15802 · doi:10.1090/S0002-9947-1966-0192318-X
[20] Adly, S., Ernst, E., Théra, M.: Well-positioned closed convex sets and well-positioned closed convex functions. J. Glob. Optim. 29, 337-351 (2004) · Zbl 1072.52005 · doi:10.1023/B:JOGO.0000047907.66385.5d
[21] Marinacci, M., Montrucchio, L.: Finitely Well-Positioned Sets. Preprint, Università Bocconi, Milano (2010) · Zbl 1242.52012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.