×

Generalized proximal-type methods for weak vector variational inequality problems in Banach spaces. (English) Zbl 1338.90375

Summary: In this paper, we propose a class of generalized proximal-type method by the virtue of Bregman functions to solve weak vector variational inequality problems in Banach spaces. We carry out a convergence analysis on the method and prove the weak convergence of the generated sequence to a solution of the weak vector variational inequality problems under some mild conditions. Our results extend some known results to more general cases.

MSC:

90C29 Multi-objective and goal programming
65K10 Numerical optimization and variational techniques
49M05 Numerical methods based on necessary conditions

References:

[1] Martinet, B: Regularisation d’inéquations variationelles par approximations successives. Rev. Fr. Inform. Rech. Oper. 2, 154-159 (1970) · Zbl 0215.21103
[2] Rockafellar, RT: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877-898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[3] Auslender, A, Haddou, M: An interior proximal point method for convex linearly constrained problems and its extension to variational inequalities. Math. Program. 71, 77-100 (1995) · Zbl 0855.90095
[4] Güler, O: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403-419 (1991) · Zbl 0737.90047 · doi:10.1137/0329022
[5] Kamimura, S, Takahashi, W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13(3), 938-945 (2003) · Zbl 1101.90083 · doi:10.1137/S105262340139611X
[6] Pathak, HK, Cho, YJ: Strong convergence of a proximal-type algorithm for an occasionally pseudomonotone operator in Banach spaces. Fixed Point Theory Appl. 2012, 190 (2012) · Zbl 1475.47069 · doi:10.1186/1687-1812-2012-190
[7] Pennanen, T: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27(1), 170-191 (2002) · Zbl 1082.90582 · doi:10.1287/moor.27.1.170.331
[8] Solodov, MV, Svaiter, BF: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program., Ser. A 87, 189-202 (2000) · Zbl 0971.90062
[9] Bonnel, H, Iusem, AN, Svaiter, BF: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953-970 (2005) · Zbl 1093.90054 · doi:10.1137/S1052623403429093
[10] Ceng, LC, Yao, JC: Approximate proximal methods in vector optimization. Eur. J. Oper. Res. 181(1), 1-19 (2007) · Zbl 1128.90053 · doi:10.1016/j.ejor.2006.09.070
[11] Chen, Z, Huang, XX, Yang, XQ: Generalized proximal point algorithms for multiobjective optimization problems. Appl. Anal. 90, 935-949 (2011) · Zbl 1242.90207 · doi:10.1080/00036811.2010.483428
[12] Chen, Z, Zhao, KQ: A proximal-type method for convex vector optimization problem in Banach spaces. Numer. Funct. Anal. Optim. 30, 70-81 (2009) · Zbl 1167.90617 · doi:10.1080/01630560902735272
[13] Chen, Z, Huang, HQ, Zhao, KQ: Approximate generalized proximal-type method for convex vector optimization problem in Banach spaces. Comput. Math. Appl. 57, 1196-1203 (2009) · Zbl 1186.90100 · doi:10.1016/j.camwa.2008.11.017
[14] Chen, Z: Asymptotic analysis in convex composite multiobjective optimization problems. J. Glob. Optim. 55, 507-520 (2013) · Zbl 1290.90066 · doi:10.1007/s10898-012-0032-z
[15] Bregman, LM: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200-217 (1967). doi:10.1016/0041-5553(67)90040-7 · doi:10.1016/0041-5553(67)90040-7
[16] Censor, Y, Lent, A: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321-353 (1981) · Zbl 0431.49042 · doi:10.1007/BF00934676
[17] Bauschke, HH, Borwein, JM: Legendre function and the method of random Bregman functions. J. Convex Anal. 4, 27-67 (1997) · Zbl 0894.49019
[18] Censor, Y, Zenios, SA: The proximal minimization algorithm with D-function. J. Optim. Theory Appl. 73, 451-464 (1992) · Zbl 0794.90058 · doi:10.1007/BF00940051
[19] Chen, G, Teboulle, M: Convergence analysis of a proximal-like minimization algorithm using Bregman function. SIAM J. Optim. 3(3), 538-543 (1993) · Zbl 0808.90103 · doi:10.1137/0803026
[20] Kiwiel, KC: Proximal minimization methods with generalized Bregman functions. SIAM J. Control Optim. 35, 326-349 (1997) · Zbl 0890.65061 · doi:10.1137/S0363012995281742
[21] Burachik, RS, Iusem, AN: A generalized proximal point algorithm for the variational inequality problem in a Hilbert space. SIAM J. Optim. 8(1), 197-216 (1998) · Zbl 0911.90273 · doi:10.1137/S1052623495286302
[22] Burachik, RS, Scheimberg, S: A proximal point algorithm for the variational inequality problem in Banach space. SIAM J. Control Optim. 39(5), 1633-1649 (2001) · Zbl 0988.90045 · doi:10.1137/S0363012998339745
[23] Giannessi, F.; Cottle, RW (ed.); Giannessi, F. (ed.); Lions, JL (ed.), Theorems of alternative, quadratic programs and complementarity problems (1980), New York · Zbl 0484.90081
[24] Chen, GY, Yang, XQ: The vector complementary problem and its equivalences with vector minimal element in ordered spaces. J. Math. Anal. Appl. 153, 136-158 (1990) · Zbl 0712.90083 · doi:10.1016/0022-247X(90)90223-3
[25] Chen, GY: Existence of solutions for a vector variational inequality: an extension of the Hartman-Stampacchia theorem. J. Optim. Theory Appl. 74, 445-456 (1992) · Zbl 0795.49010 · doi:10.1007/BF00940320
[26] Chen, GY, Huang, XX, Yang, XQ: Vector Optimization, Set-Valued and Variational Analysis. Lecture Notes in Economics and Mathematical Systems, vol. 541. Springer, Berlin (2005) · Zbl 1104.90044
[27] Chen, Z: Asymptotic analysis for proximal-type methods in vector variational inequality problems. Oper. Res. Lett. 43, 226-230 (2015) · Zbl 1408.90270 · doi:10.1016/j.orl.2015.02.003
[28] Allgower, EL, Böhmer, K, Potra, FA, Rheinboldt, WC: A mesh independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23, 160-169 (1986) · Zbl 0591.65043 · doi:10.1137/0723011
[29] Heinkenschloss, M: Mesh independence for nonlinear least squares problems with norm constraints. SIAM J. Optim. 3, 81-117 (1993) · Zbl 0771.65030 · doi:10.1137/0803005
[30] Laumen, M: Newton’s mesh independence principle for a class of optimal shape design problems. SIAM J. Control Optim. 37, 1142-1168 (1999) · Zbl 0931.65068 · doi:10.1137/S0363012996303529
[31] Huang, XX, Fang, YP, Yang, XQ: Characterizing the nonemptiness and compactness of the solution set of a vector variational inequality by scalarization. J. Optim. Theory Appl. 162(2), 548-558 (2014) · Zbl 1315.90055 · doi:10.1007/s10957-012-0224-1
[32] Facchinei, F, Pang, JS: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I, II. Springer Series in Operations Research. Springer, Berlin (2004) · Zbl 1062.90002 · doi:10.1007/b97544
[33] Hu, R, Fang, YP: On the nonemptiness and compactness of the solution sets for vector variational inequalities. Optimization 59, 1107-1116 (2010) · Zbl 1229.90231 · doi:10.1080/02331930903395600
[34] Rockafellar, RT: Convex Analysis. Princeton University Press, Princeton (1970) · Zbl 0193.18401 · doi:10.1515/9781400873173
[35] Rockafellar, RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970) · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[36] Auslender, A: Optimisation. Methodes Numeriques. Masson, Paris (1976) · Zbl 0326.90057
[37] Brezis, H, Haraux, A: Image d’une somme d’operateurs monotones et applications. Isr. J. Math. 23, 165-186 (1976) · Zbl 0323.47041 · doi:10.1007/BF02756796
[38] Pascali, D, Sburlan, S: Nonlinear Mappings of Monotone Type. Nijhoff, Dordrecht (1978) · Zbl 0423.47021 · doi:10.1007/978-94-009-9544-4_3
[39] Butnariu, D.; Iusem, AN; Censor, Y. (ed.); Reich, S. (ed.), Local moduli of convexity and their applications to finding almost common points of measurable families of operators, No. 204, 61-91 (1997), Providence · Zbl 0874.46006 · doi:10.1090/conm/204/02623
[40] Attouch, H, Buttazzo, G, Michaille, G: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS/SIAM, Philadelphia (2006) · Zbl 1095.49001 · doi:10.1137/1.9780898718782
[41] Fan, JH, Jing, Y, Zhong, RY: Nonemptiness and boundedness of solution sets for vector variational inequalities via topological method. J. Glob. Optim. 63, 181-193 (2015). doi:10.1007/s10898-015-0279-2 · Zbl 1322.49011 · doi:10.1007/s10898-015-0279-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.