×

A polynomial Roth theorem on the real line. (English) Zbl 1432.42005

For a polynomial \(P:\mathbb{R}\to\mathbb{R}\), denote by \(\|P\|\) the \(\ell^1\) sum of the coefficients of \(P\). Let \(M,\,N\ge1\) be two real numbers. Assume that \(\varepsilon>0\) and \(S\) is a measurable subset of \([0,N]\) satisfying \(|S|\ge\varepsilon N\). Let \(P:\mathbb{R}\to\mathbb{R}\) be a monic polynomial of degree \(d>1\) without constant term that satisfies \(\|P\|\le M\).
In this article, the authors proved that there exists a positive constant \(\delta:=\delta(\varepsilon,M,d)\) such that one can find that \[x,x+t,x+P(t)\in S, \] with \(t>\delta N^{1/d}\), satisfies \((\log\log\delta^{-1})^{-\frac16}\gtrsim\varepsilon\). This is an extension of a result obtained by J. Bourgain [J. Anal. Math. 50, 169–181 (1988; Zbl 0675.42010)]. The proof for the above result is based on a combination of Bourgain’s approach and more recent methods that were originally developed for the study of the bilinear Hilbert transform along curves.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
11B30 Arithmetic combinatorics; higher degree uniformity

Citations:

Zbl 0675.42010

References:

[1] Bergelson, V.; Leibman, A., Polynomial extensions of van der Waerden’s and Szemer\'edi’s theorems, J. Amer. Math. Soc., 9, 3, 725-753 (1996) · Zbl 0870.11015 · doi:10.1090/S0894-0347-96-00194-4
[2] Bourgain, J., A Szemer\'edi type theorem for sets of positive density in \({\bf R}^k\), Israel J. Math., 54, 3, 307-316 (1986) · Zbl 0609.10043 · doi:10.1007/BF02764959
[3] Bourgain, J., A nonlinear version of Roth’s theorem for sets of positive density in the real line, J. Analyse Math., 50, 169-181 (1988) · Zbl 0675.42010 · doi:10.1007/BF02796120
[4] Cook, Brian; Magyar, \'Akos; Pramanik, Malabika, A Roth-type theorem for dense subsets of \(\mathbb{R}^d\), Bull. Lond. Math. Soc., 49, 4, 676-689 (2017) · Zbl 1370.05210 · doi:10.1112/blms.12043
[5] P. Durcik, V. Kovac, and L. Rimani\'c, On side lengths of corners in positive density subsets of the Euclidean space, arXiv:1609.09056 (2016). Int. Math. Res. Not. IMRN (to appear). · Zbl 1442.05234
[6] Gressman, Philip T.; Xiao, Lechao, Maximal decay inequalities for trilinear oscillatory integrals of convolution type, J. Funct. Anal., 271, 12, 3695-3726 (2016) · Zbl 1350.42025
[7] Guo, Shaoming; Hickman, Jonathan; Lie, Victor; Roos, Joris, Maximal operators and Hilbert transforms along variable non-flat homogeneous curves, Proc. Lond. Math. Soc. (3), 115, 1, 177-219 (2017) · Zbl 1388.42039 · doi:10.1112/plms.12037
[8] Guo, Jingwei; Xiao, Lechao, Bilinear Hilbert transforms associated with plane curves, J. Geom. Anal., 26, 2, 967-995 (2016) · Zbl 1337.42011 · doi:10.1007/s12220-015-9580-z
[9] Henriot, Kevin; \L aba, Izabella; Pramanik, Malabika, On polynomial configurations in fractal sets, Anal. PDE, 9, 5, 1153-1184 (2016) · Zbl 1420.28003 · doi:10.2140/apde.2016.9.1153
[10] H\"ormander, Lars, Oscillatory integrals and multipliers on \(FL^p\), Ark. Mat., 11, 1-11 (1973) · Zbl 0254.42010 · doi:10.1007/BF02388505
[11] Lacey, Michael; Thiele, Christoph, \(L^p\) estimates on the bilinear Hilbert transform for \(2<p<\infty \), Ann. of Math. (2), 146, 3, 693-724 (1997) · Zbl 0914.46034 · doi:10.2307/2952458
[12] Lacey, Michael; Thiele, Christoph, On Calder\'on’s conjecture, Ann. of Math. (2), 149, 2, 475-496 (1999) · Zbl 0934.42012 · doi:10.2307/120971
[13] Li, Xiaochun, Bilinear Hilbert transforms along curves I: The monomial case, Anal. PDE, 6, 1, 197-220 (2013) · Zbl 1275.42022 · doi:10.2140/apde.2013.6.197
[14] Li, Xiaochun; Xiao, Lechao, Uniform estimates for bilinear Hilbert transforms and bilinear maximal functions associated to polynomials, Amer. J. Math., 138, 4, 907-962 (2016) · Zbl 1355.42011 · doi:10.1353/ajm.2016.0030
[15] Lie, Victor, On the boundedness of the bilinear Hilbert transform along “non-flat” smooth curves, Amer. J. Math., 137, 2, 313-363 (2015) · Zbl 1318.42008 · doi:10.1353/ajm.2015.0013
[16] Lie, Victor, On the boundedness of the bilinear Hilbert transform along “non-flat” smooth curves. The Banach triangle case \((L^r, 1\leq r<\infty)\), Rev. Mat. Iberoam., 34, 1, 331-353 (2018) · Zbl 1395.42009 · doi:10.4171/RMI/987
[17] Roth, K. F., On certain sets of integers, J. London Math. Soc., 28, 104-109 (1953) · Zbl 0050.04002 · doi:10.1112/jlms/s1-28.1.104
[18] Tao, Terence; Ziegler, Tamar, The primes contain arbitrarily long polynomial progressions, Acta Math., 201, 2, 213-305 (2008) · Zbl 1230.11018 · doi:10.1007/s11511-008-0032-5
[19] Tao, Terence; Ziegler, Tamar, Polynomial patterns in the primes, Forum Math. Pi, 6, e1, 60 pp. (2018) · Zbl 1459.11030 · doi:10.1017/fmp.2017.3
[20] Stein, Elias M., Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43, xiv+695 pp. (1993), Princeton University Press, Princeton, NJ · Zbl 0821.42001
[21] Xiao, Lechao, Sharp estimates for trilinear oscillatory integrals and an algorithm of two-dimensional resolution of singularities, Rev. Mat. Iberoam., 33, 1, 67-116 (2017) · Zbl 1362.42038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.