×

Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. (English) Zbl 1098.42017

There are a number of important inequalities in both Harmonic Analysis and PDE which are of the form \[ \int_{\mathbb R^n}| Tf(x)| ^pw(x)\,dx\leq C\int_{\mathbb R^n}| Sf(x)| ^p w(x)\,dx,\tag \(*\) \] where typically \(T\) is an operator with some degree of singularity (e.g., certain singular integral operator) and \(S\) is an operator which is easier to handle (e.g., a maximal operator), and \(w\) is in some class of weights. As it is well known, the usual technique for proving such results is to establish a good-\(\lambda\) inequality between \(T\) and \(S\). Inspired by the extrapolation theory for \(A_p\) weights discovered by Rubio de Francia, D. Cruz-Uribe, J. M. Martell and C. Pérez [J. Funct. Anal. 213, No. 2, 412–439 (2004; Zbl 1052.42016)] presented another approach to derive inequalities like (\(\ast\)) without using the good-\(\lambda\) technique. Namely, assume that (\(\ast\)) holds for some fixed exponent \(p_0\in (0,\infty)\) and for all \(w\in A_\infty\) and all (reasonable) functions \(f\) for which the left-hand side is finite. Then, the authors of the paper mentioned above showed that there is a very general extrapolation principle that allows one to get the full range of exponents \(p\in(0,\infty)\). As a consequence of this general extrapolation principle, vector-valued inequalities were obtained in a very easy way without using the Banach-valued theory in the paper mentioned above. However, with the extrapolation results mentioned above, no useful estimate was obtained at the endpoint \(p=1\), since \(L^1(w)\) is usually not the suitable endpoint space for the operator \(S\). In the paper mentioned above, for a Calderón-Zygmund operator \(T\), the authors found that the suitable endpoint space is the Lorentz space \(L^{1,\infty}(w)\). However, this is not the case for the commutator, \([b, T]\), generated by \(T\) and \(b\in \text{BMO} (\mathbb R^n)\). The main purpose of the present paper is to provide a more general framework in which this kind of examples can also be treated. To be precise, in this paper, the authors present an extrapolation theory that allows the authors to obtain, from weighted \(L^p\) inequalities on pairs of operators \(S\) for \(p\) fixed and all \(A_\infty\) weights, estimates for the same pairs on very general rearrangement invariant quasi-Banach spaces with \(A_\infty\) weights and also modular inequalities with \(A_\infty\) weights. As above mentioned, vector-valued inequalities are obtained automatically, without the need of a Banach-valued theory. This provides a method to prove very fine estimates for a variety of operators which include singular and fractional integrals and their commutators. In particular, the authors obtain weighted, and vector-valued, extensions of the classical theorems of Boyd and Lorentz-Shimogaki. The key is to develop appropriate versions of Rubio de Francia’s algorithm.
Reviewer: Yang Dachun (Kiel)

MSC:

42B35 Function spaces arising in harmonic analysis
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
47B47 Commutators, derivations, elementary operators, etc.
47A30 Norms (inequalities, more than one norm, etc.) of linear operators

Citations:

Zbl 1052.42016
Full Text: DOI

References:

[1] Asekritova, I. U.; Krugljak, N. Y.; Maligranda, L.; Persson, L. E., Distribution and rearrangement estimates of the maximal functions and interpolation, Studia Math., 124, 107-132 (1997) · Zbl 0888.42011
[2] Bagby, R.; Parsons, J., Orlicz spaces and rearranged maximal functions, Math. Nachr., 132, 15-27 (1987) · Zbl 0657.42019
[3] Benedek, A.; Calderón, A. P.; Panzone, R., Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. USA, 48, 356-365 (1962) · Zbl 0103.33402
[4] Bennett, C.; Rudnick, K., On Lorentz-Zygmund spaces, Dissertationes Math., 175, 1-67 (1980) · Zbl 0456.46028
[5] Bennett, C.; Sharpley, R., Interpolation of Operators (1988), Academic Press: Academic Press New York · Zbl 0647.46057
[6] Boyd, D. W., The Hilbert transform on rearrangement-invariant spaces, Canad. J. Math., 19, 599-616 (1967) · Zbl 0147.11302
[7] Burkholder, D. L.; Gundy, R. F., Extrapolation and interpolation of quasilinear operators on martingales, Acta Math., 124, 249-304 (1970) · Zbl 0223.60021
[8] M.J. Carro, J. Raposo, J. Soria, Recent developments in the theory of Lorenz spaces and weighted inequalities, Mem. Amer. Math. Soc., to appear.; M.J. Carro, J. Raposo, J. Soria, Recent developments in the theory of Lorenz spaces and weighted inequalities, Mem. Amer. Math. Soc., to appear. · Zbl 1126.42005
[9] Coifman, R. R., Distribution function inequalities for singular integrals, Proc. Natl. Acad. Sci. USA, 69, 2838-2839 (1972) · Zbl 0243.44006
[10] Coifman, R. R.; Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51, 241-250 (1974) · Zbl 0291.44007
[11] Coifman, R. R.; Rochberg, R.; Weiss, G., Factorization theorems for Hardy spaces in several variables, Ann. Math., 103, 611-635 (1976) · Zbl 0326.32011
[12] Cruz-Uribe, D.; Fiorenza, A., Endpoint estimates and weighted norm inequalities for commutators of fractional integrals, Publ. Mat., 47, 103-131 (2003) · Zbl 1035.42015
[13] Cruz-Uribe, D.; Martell, J. M.; Pérez, C., Extrapolation results for \(A_\infty\) weights and applications, J. Funct. Anal., 213, 412-439 (2004) · Zbl 1052.42016
[14] Cruz-Uribe, D.; Neugebauer, C. J., The structure of the reverse Hölder classes, Trans. Amer. Math. Soc., 347, 2941-2960 (1995) · Zbl 0851.42016
[15] Cruz-Uribe, D.; Neugebauer, C. J., Weighted norm inequalities for the geometric maximal operator, Publ. Mat., 42, 239-263 (1998) · Zbl 0919.42014
[16] J. Duoandikoetxea, Fourier Analysis, American Mathematical Society, Graduate Studies in Mathematics, vol. 29, Providence, RI, 2000.; J. Duoandikoetxea, Fourier Analysis, American Mathematical Society, Graduate Studies in Mathematics, vol. 29, Providence, RI, 2000. · Zbl 0969.42001
[17] Duong, X. T.; Yan, L. X., On commutators of fractional integrals, Proc. Amer. Math. Soc., 132, 12, 3549-3557 (2004) · Zbl 1046.42005
[18] Evans, W. D.; Opic, B.; Pick, L., Interpolation of operators on scales of generalized Lorentz-Zygmund spaces, Math. Nachr., 182, 127-181 (1996) · Zbl 0865.46016
[19] Fefferman, C.; Stein, E. M., Some maximal inequalities, Amer. J. Math., 93, 107-115 (1971) · Zbl 0222.26019
[20] Fefferman, C.; Stein, E. M., \(H^p\) spaces of several variables, Acta Math., 129, 137-193 (1972) · Zbl 0257.46078
[21] García-Cuerva, J., An extrapolation theorem in the theory of \(A_p\)-weights, Proc. Amer. Math. Soc., 87, 422-426 (1983) · Zbl 0542.41011
[22] García-Cuerva, J., Extrapolation of weighted norm inequalities from endpoint spaces to Banach lattices, J. London Math. Soc. (2), 46, 280-294 (1992) · Zbl 0770.42012
[23] García-Cuerva, J.; Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, (North-Holland Mathematical Studies, vol. 116 (1985), North-Holland: North-Holland Amsterdam) · Zbl 0578.46046
[24] Grafakos, L.; Kalton, N. J., Some remarks on multilinear maps and interpolation, Math. Ann., 319, 151-180 (2001) · Zbl 0982.46018
[25] Grafakos, L.; Torres, R., Multilinear Calderón-Zygmund theory, Adv. Math., 165, 124-164 (2002) · Zbl 1032.42020
[26] Grafakos, L.; Torres, R., Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J., 51, 1261-1276 (2002) · Zbl 1033.42010
[27] Johnson, W. B.; Schechtman, G., Sums of independent random variables in rearrangement invariant function spaces, Ann. Probab., 17, 789-808 (1989) · Zbl 0674.60051
[28] Kalton, N. J., Convexity conditions on non-locally convex lattices, Glasgow J. Math., 25, 141-152 (1984) · Zbl 0564.46004
[29] Kerman, R. A.; Torchinsky, A., Integral inequalities with weights for the Hardy maximal function, Studia Math., 71, 277-284 (1982) · Zbl 0517.42030
[30] Kokilashvili, V.; Krbec, M., Weighted Inequalities in Lorentz and Orlicz Spaces (1991), World Scientific: World Scientific Singapore · Zbl 0751.46021
[31] Krein, S. G.; Petunin, Ju. I.; Semenov, E. M., Interpolation of Linear Operators (1982), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0251.46038
[32] Leckband, M. A.; Neugebauer, C. J., Weighted iterates and variants of the Hardy-Littlewood maximal operator, Trans. Amer. Math. Soc., 279, 51-61 (1983) · Zbl 0535.42016
[33] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces, II (1979), Springer: Springer Berlin, New York · Zbl 0403.46022
[34] Lorentz, G. G., Majorants in spaces of integrable functions, Amer. J. Math., 77, 484-492 (1955) · Zbl 0064.36101
[35] Martell, J. M., Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, Studia Math., 161, 113-145 (2004) · Zbl 1044.42019
[36] Martell, J. M.; Pérez, C.; Trujillo-Gonzalez, R., Lack of natural weighted estimates for some classical Singular Integral Operators, Trans. Amer. Math. Soc., 357, 1, 385-396 (2005) · Zbl 1072.42014
[37] S.J. Montgomery-Smith, The Hardy Operator and Boyd Indices, Interaction between Functional Analysis, Harmonic Analysis, and Probability (Columbia, MO, 1994), Lecture Notes in Pure and Applied Mathematics, vol. 175, Dekker, New York, 1996, pp. 359-364.; S.J. Montgomery-Smith, The Hardy Operator and Boyd Indices, Interaction between Functional Analysis, Harmonic Analysis, and Probability (Columbia, MO, 1994), Lecture Notes in Pure and Applied Mathematics, vol. 175, Dekker, New York, 1996, pp. 359-364. · Zbl 0838.47021
[38] Muckenhoupt, B.; Wheeden, R., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192, 261-274 (1974) · Zbl 0289.26010
[39] Pérez, C., Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 128, 163-185 (1995) · Zbl 0831.42010
[40] Pérez, C., On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted \(L^p\)-spaces with different weights, Proc. London Math. Soc. (3), 71, 135-157 (1995) · Zbl 0829.42019
[41] Pérez, C., Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., 3, 743-756 (1997) · Zbl 0894.42006
[42] C. Pérez, R. Torres, Sharp maximal function estimates for multilinear singular integrals, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemporary Mathematics, vol. 320, American Mathematical Society, Providence, RI, 2003, pp. 323-331.; C. Pérez, R. Torres, Sharp maximal function estimates for multilinear singular integrals, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemporary Mathematics, vol. 320, American Mathematical Society, Providence, RI, 2003, pp. 323-331. · Zbl 1045.42011
[43] Pérez, C.; Trujillo-Gonzalez, R., Sharp weighted estimates for multilinear commutators, J. London Math. Soc. (2), 65, 672-692 (2002) · Zbl 1012.42008
[44] Pérez, C.; Trujillo-Gonzalez, R., Sharp weighted estimates for vector-valued singular integral operators and commutators, Tohoku Math. J. (2), 55, 109-129 (2003) · Zbl 1053.42021
[45] Rao, M. M.; Ren, Z. D., Theory of Orlicz spaces, (Monographs and Textbooks in Pure and Applied Mathematics, vol. 146 (1991), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York) · Zbl 0724.46032
[46] Rubio de Francia, J. L., Factorization theory and \(A_p\) weights, Amer. J. Math., 106, 533-547 (1984) · Zbl 0558.42012
[47] Rubio de Francia, J. L.; Ruiz, F. J.; Torrea, J. L., Calderón-Zygmund theory for operator-valued kernels, Adv. Math., 62, 7-48 (1986) · Zbl 0627.42008
[48] Sawyer, E., Boundedness of classical operators on classical Lorentz spaces, Studia Math., 96, 145-158 (1990) · Zbl 0705.42014
[49] Shimogaki, T., Hardy-Littlewood majorants in function spaces, J. Math. Soc. Japan, 17, 365-373 (1965) · Zbl 0135.16304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.