×

Lack of natural weighted estimates for some singular integral operators. (English) Zbl 1072.42014

Summary: We show that the classical Hörmander condition, or analogously the \(L^r\)-Hörmander condition, for singular integral operators \(T\) is not sufficient to derive Coifman’s inequality \[ \int_{\mathbb{R} ^n} | Tf(x)|^p\, w(x)\, dx \leq C\,\int_{\mathbb{R} ^n} M f(x)^p\, w(x)\,dx, \] where \(0<p<\infty\), \(M\) is the Hardy-Littlewood maximal operator, \(w\) is any \(A_{\infty}\) weight and \(C\) is a constant depending upon \(p\) and the \(A_{\infty}\) constant of \(w\). This estimate is well known to hold when \(T\) is a Calderón-Zygmund operator.
As a consequence we deduce that the following estimate does not hold: \[ \int_{\mathbb{R} ^n} | Tf(x)|^p\, w(x)\, dx \leq C\,\int_{\mathbb{R} ^n} Mf(x)^p\, Mw(x)\,dx, \] where \(0<p\leq 1\) and where \(w\) is an arbitrary weight. However, by a recent result due to A. Lerner, this inequality is satisfied whenever \(T\) is a Calderón-Zygmund operator.
One of the main ingredients of the proof is a very general extrapolation theorem for \(A_\infty\) weights.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
Full Text: DOI

References:

[1] J. Alvarez and C. Pérez, Estimates with \?_{\infty } weights for various singular integral operators, Boll. Un. Mat. Ital. A (7) 8 (1994), no. 1, 123 – 133 (English, with Italian summary). · Zbl 0807.42013
[2] Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. · Zbl 0647.46057
[3] Michael Christ, Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics, vol. 77, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. · Zbl 0745.42008
[4] R. R. Coifman, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 2838 – 2839. · Zbl 0243.44006
[5] D. Cruz-Uribe, J.M. Martell, C. Pérez, Extrapolation results for \(A_\infty\) weights and applications, to appear in J. Funct. Anal. · Zbl 1052.42016
[6] Javier Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. · Zbl 0969.42001
[7] José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. · Zbl 0578.46046
[8] L. Grafakos, Estimates for maximal singular integrals with rough kernels, Colloq. Math. (to appear). · Zbl 0913.42014
[9] Steve Hofmann, Singular integrals with power weights, Proc. Amer. Math. Soc. 110 (1990), no. 2, 343 – 353. · Zbl 0717.42018
[10] F. John, Quasi-isometric mappings, Seminari 1962/63 Anal. Alg. Geom. e Topol., vol. 2, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 462 – 473.
[11] Douglas S. Kurtz and Richard L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343 – 362. · Zbl 0427.42004
[12] A.K. Lerner, Weighted norm inequalities for the local sharp maximal function, preprint (2002). · Zbl 1098.42013
[13] Benjamin Muckenhoupt and Richard L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249 – 258. · Zbl 0226.44007
[14] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. (2) 49 (1994), no. 2, 296 – 308. · Zbl 0797.42010 · doi:10.1112/jlms/49.2.296
[15] C. Pérez, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted \?^{\?}-spaces with different weights, Proc. London Math. Soc. (3) 71 (1995), no. 1, 135 – 157. · Zbl 0829.42019 · doi:10.1112/plms/s3-71.1.135
[16] C. Pérez and R. Trujillo-González, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. (2) 65 (2002), no. 3, 672 – 692. · Zbl 1012.42008 · doi:10.1112/S0024610702003174
[17] José L. Rubio de Francia, Francisco J. Ruiz, and José L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), no. 1, 7 – 48. · Zbl 0627.42008 · doi:10.1016/0001-8708(86)90086-1
[18] Jan-Olov Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), no. 3, 511 – 544. · Zbl 0429.46016 · doi:10.1512/iumj.1979.28.28037
[19] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. · Zbl 0821.42001
[20] David K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), no. 2, 389 – 399. · Zbl 0711.42025 · doi:10.1215/S0012-7094-90-06015-6
[21] J. Michael Wilson, Weighted norm inequalities for the continuous square function, Trans. Amer. Math. Soc. 314 (1989), no. 2, 661 – 692. · Zbl 0689.42016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.