×

Dynamical probing of piecewise nonlinear resistor-capacitor inductor shunted Josephson junction circuit embedded in microcontroller implementation. (English) Zbl 07835653

Summary: This paper evaluates the theoretical and microcontroller execution probing of piecewise nonlinear resistor-capacitor inductor shunted Josephson junction circuit (PNRCISJJC). Kirchhoff’s laws establish the equivalent rate equations of the PNRCISJJC where two steady states with one stable and its counterpart unstable for excitation current less than or equal to one with a hat tip to Routh-Hurwitz criterion. No steady state for the applied current greater than one is observed in the PNRCISJJC. The PNRCISJJC exhibits bursting behaviors, varying structures of hidden chaotic characteristics, bistable period-4-oscillations, coexisting behaviors, regular and hidden chaotic bubbles, and antimonotonicity. Furthermore, linear offset boosting based on the current and voltage state variables uncovered that the polarity of the hidden chaotic signal of either state variable can be flexibly altered by varying the offset boosting parameters. The agreement between dynamical analysis and microcontroller realization dynamics finalizes the investigation.

MSC:

94Cxx Circuits, networks
93-XX Systems theory; control
Full Text: DOI

References:

[1] Brockett, R., The status of stability theory for deterministic systems, IEEE Trans. Automat. Contr., 11, 596-606, 1966
[2] Lien, W. C.; Liu, T. P., Nonlinear Stability of a Self-Similar 3-Dimensional¶ Gas Flow, Commun. Math. Phys., 204, 525-549, 1999 · Zbl 0945.76033
[3] Boccaletti, S.; Grebogi, C.; Lai, Y. C.; Mancini, H.; Maza, D., The control of chaos: theory and applications, Phys. Rep., 329, 103-197, 2000
[4] Gottwald, G. A.; Melbourne, I., A new test for chaos in deterministic systems, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 460, 603-611, 2004 · Zbl 1042.37060
[5] Gottwald, G. A.; Melbourne, I., Testing for chaos in deterministic systems with noise, Phys. D Nonlinear Phenom, 212, 100-110, 2005 · Zbl 1097.37024
[6] Ding, J.; Zhou, A., Statistical Properties of Deterministic Systems, 2010, Springer Science & Business Media
[7] Hennequin, D.; Glorieux, P., Symbolic dynamics in a passive Q-switching laser, Europhys. Lett., 14, 237-242, 1991
[8] Karimi, A.; Paul, M. R., Quantifying spatiotemporal chaos in Rayleigh-Bénard convection, Phys. Rev. E, 85, 046201-046209, 2012
[9] Egolf, D. A.; Melnikov, I. V.; Pesch, W.; Ecke, R. E., Mechanisms of extensive spatiotemporal chaos in Rayleigh-Bénard convection, Nature, 404, 733-736, 2000
[10] Paul, M. R.; Einarsson, M. I.; Fischer, P. F.; Cross, M. C., Extensive chaos in Rayleigh-Bénard convection, Phys. Rev. E, 75, 045203-045204, 2007
[11] Subramani, R.; Emin, B.; Kingni, S. T.; Akgül, A., Image encryption application and security analysis based on current modulated edge-emitting semiconductor lasers with pulse packages embedded in the microcontroller, Optik (Stuttg), 287, Article 171164 pp., 2023
[12] Ramamoorthy, R.; Tsafack, N.; Saeed, N.; Kingni, S. T.; Rajagopal, K., Current modulation based vertical cavity surface emitting laser: system-on-chip realization and compressive sensing based image encryption, Opt. Quantum Electron., 55, 91, 2023
[13] Kingni, S. T.; Ainamon, C.; Kamdoum, V.; Orou, J. C., Directly modulated semiconductor ring lasers: chaos synchronization and applications to cryptography communications, Chaos Theory Appl, 2, 31-39, 2020
[14] Lecar, M.; Franklin, F. A.; Holman, M. J.; Murray, N. W., Chaos in the solar system, Annu. Rev. Astron. Astrophys., 39, 581-631, 2001
[15] Olsen, P. E., Mapping solar system chaos with the Geological Orrery, Proc. Natl. Acad. Sci, 116, 10664-10673, 2019
[16] Liu, W.; Zhuang, M.; Zhu, B.; Huang, J.; Lee, C., Quantum metrology via chaos in a driven Bose-Josephson system, Phys. Rev. A, 103, Article 023309 pp., 2021
[17] Fiderer, L. J.; Braun, D., Quantum metrology with quantum-chaotic sensors, Nat. Commun., 9, 1351-1359, 2018
[18] Gao, J., Entrainment of chaotic activities in brain and heart during MBSR mindfulness training, Neurosci. Lett., 616, 218-223, 2016
[19] Pool, R., Is It Healthy to Be Chaotic? Chaos may provide a healthy flexibility to the heart, brain, and other parts of the body. Conversely, many ailments may be associated with a loss of this chaotic flexibility, Science, 243, 604-607, 1989
[20] De la Hoz, M. Z.; Acho, L.; Vidal, Y., A modified Chua chaotic oscillator and its application to secure communications, Appl. Math. Comput., 247, 712-722, 2014 · Zbl 1338.94089
[21] Luo, A. C.; Xue, B., An analytical prediction of periodic flows in the Chua circuit system, Int. J. Bifurc. Chaos, 19, 2165-2180, 2009 · Zbl 1176.34056
[22] Kingni, S. T.; Kuiate, G. F.; Kengne, R.; Tchitnga, R.; Woafo, P., Analysis of a no equilibrium linear resistive-capacitive-inductance shunted junction model, dynamics, synchronization, and application to digital cryptography in its fractional-order form, WILEY, Hindawi Complex, 2017, 1-12, 2017 · Zbl 1377.93116
[23] Ramadoss, J.; Ngongiah, I. K.; Chamgoué, A. C.; Pone, J. R.M.; Rajagopal, K.; Kingni, S. T., Josephson junction model with cosine interference term: analysis, microcontroller implementation, and network analysis, Phys. Scr., 96, 2021, 125232-12
[24] Ngongiah, I. K.; Ramakrishnan, B.; Natiq, H.; Pone, J. R.M.; Kuiate, G. F., Josephson junction based on high critical-temperature superconductors: analysis, microcontroller implementation, and suppression of coexisting and chaotic attractors, Eur. Phys. J. B, 95, 2022, 153-13
[25] Ngatcha, D. T.; Oumate, A. A.; Tsafack, A. S.K.; Kingni, S. T., Dynamical analysis and microcontroller implementation of linear resistor-capacitor shunted Josephson junction model, CHAOS Theory Appl., 3, 55-58, 2021
[26] Josephson, B. D., Possible new effects in superconductive tunnelling, Phys. Lett., 1, 251-253, 1962 · Zbl 0103.23703
[27] Shapiro, S., Josephson currents in Superconducting tunneling: the effect of microwaves and other observations, Phys. Rev. Lett., 11, 80-82, 1963
[28] Tjalling, J. Y., Historical development of the newton-raphson, Soc. Ind. Appl. Math., 37, 531-551, 1995 · Zbl 0842.01005
[29] Wolf, E. L.; Arnold, G. B.; Gurvitch, M. A.; Zasadzinski, J. F., Josephson junctions: history, devices, and Applications, 2017, CRC Press
[30] Whan, C. B.; Lobb, C. J.; Forrester, M. G., Effect of inductance in externally shunted Josephson tunnel junctions, J. Appl. Phys., 77, 382-389, 1995
[31] Sancho, S.; Suarez, A., Frequency-domain analysis of the periodically-forced Josephson-junction circuit, IEEE Trans. Circuits Syst. I Regul. Pap., 61, 512-521, 2014
[32] Ngongiah, I. K.; Vivekanandan, G.; Kuiate, G. F.; Mbognou, F. C.F.; Rajagopal, K., Theoretical investigation of an array of Josephson junction neuron circuits actuating a mechanical leg and the array in mimicking a multi-legged locomotion, Pramana J. Phys., 97, 1-14, 2023
[33] Welba, C., Josephson junction Model: FPGA Implementation and Chaos-Based Encryption of sEMG Signal through Image Encryption Technique, Complexity, 2022, 1-14, 2022
[34] Kashiwaya, S.; Tanaka, Y., Tunnelling effects on surface bound states in unconventional superconductors, Rep. Prog. Phys., 63, 1641-1643, 2000
[35] Grifoni, M.; Hänggi, P., Driven quantum tunneling, Phys. Rep., 304, 229-354, 1998
[36] Esteve, D., Observation of the temporal decoupling effect on the macroscopic quantum tunneling of a Josephson junction, Phys. Scr., T29, 121-124, 1989
[37] Gu, X.; Kockum, A. F.; Miranowicz, A.; Liu, Y.; Nori, F., Microwave photonics with superconducting quantum circuits, Phys. Rep., 718-719, 1-102, 2017 · Zbl 1377.82052
[38] Oelsner, G., Detection of weak microwave fields with an underdamped Josephson junction, Phys. Rev. Appl., 7, 014012-014017, 2017
[39] Revin, L. S., Microwave photon detection by an Al Josephson junction, Beilstein J. Nanotechnol., 11, 960-965, 2020
[40] Bunyk, P. I., Architectural considerations in the design of a superconducting quantum annealing processor, IEEE Trans. Appl. Supercond., 24, 1-10, 2014
[41] Aumentado, J., Superconducting parametric amplifiers: the state of the art in Josephson parametric amplifiers, IEEE Microw. Mag., 21, 45-59, 2020
[42] Adachi, S.; Tsukamoto, A.; Oshikubo, Y.; Hato, T.; Ishimaru, Y.; Tanabe, K., Fabrication of low-noise HTS-SQUID gradiometers and magnetometers with ramp-edge Josephson junctions, IEEE Trans. Appl. Supercond., 21, 367-370, 2011
[43] Kohlmann, J.; Behr, R.; Funck, T., Josephson voltage standards, Meas. Sci. Technol., 14, 1216-1228, 2003
[44] Kouami, N. M.; Nana, B.; Woafo, P., Analysis of array nanoelectromechanical beams driven by an electrical line of Josephson junctions, Phys. C Supercond. Appl., 574, 1-7, 2020
[45] Ngongiah, I. K.; Balamurali, R.; Kuiate, G. F.; Akgül, A.; Nana, B., Mechanical arm(s) driven by Josephson junction circuit(s), mimicking the movement pattern of myriapods, Phys. Scr., 98, 2023, 45221-13
[46] Benz, S. P., Josephson junctions for metrology applications, (Tafuri, F., Fundamentals and Frontiers of the Josephson Effect. Springer Series in Materials Science, 2019, Springer: Springer Cham), 587-609
[47] Hwang, S. M., Type-I superconductor pick-up coil in superconducting quantum interference device-based ultra-low field nuclear magnetic resonance, Appl. Phys. Lett., 104, 062602-062604, 2014
[48] Ramakrishnan, B.; Oumate, A. A.; Tuna, M.; Koyuncu, İ.; Kingni, S. T.; Rajagopal, K., Analysis, FPGA implementation of a Josephson junction circuit with topologically nontrivial barrier and its application to ring-based dual entropy core true random number generator, Eur. Phys. J. Spec. Top., 231, 1049-1059, 2022
[49] Kingni, S. T.; Rajagopal, K.; Çiçek, S.; Cheukem, A.; Tamba, V. K.; Kuiate, G. F., Dynamical analysis, FPGA implementation and its application to chaos based random number generator of a fractal Josephson junction with unharmonic current-phase relation, Eur. Phys. J. B, 93, 1-11, 2020 · Zbl 1516.37039
[50] Ramadoss, J.; Tamba, V. K.; Ainamon, C.; Rajagopal, K.; Kingni, S. T., Medical image encryption based on RNG with an autonomous piecewise damping Josephson junction jerk oscillator embedded in FPGA, Phys. Scr., 98, 055212-055217, 2023
[51] J.J. Mazo and A.V. Ustinov, The sine-Gordon equation in Josephson-junction arrays. The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, 155-175 (2014). DOI: 10.1007/978-3-319-06722-3_7.
[52] Matrozova, E. A.; Pankratov, A. L., Noise and generation effects in parallel Josephson junction chains, Chaos Solitons Fractals, 170, Article 113328 pp., 2023
[53] De Santis, D.; Guarcello, C.; Spagnolo, B.; Carollo, A.; Valenti, D., Ac-locking of thermally-induced sine-Gordon breathers, Chaos Solitons Fractals, 170, Article 113382 pp., 2023
[54] Ramakrishnan, B.; Ngongiah, I. K.; Çiçek, S.; Chamgoué, A. C.; Kuiate, G. F., Theoretical Analysis of Smooth Nonlinear Resistor-Capacitor Shunted Josephson Junction Circuit and Its Microcontroller-Based Digital Design with Graphic LCD, Circuits, Syst. Signal Process., 42, 47-62, 2023 · Zbl 1510.94101
[55] Khaira, N. K.; Singh, T.; Mansour, R. R., Josephson junctions-based low-temperature superconducting phase shifter for X-and K-bands using MIT-LL SFQ5ee process, IEEE Microw. Wirel. Components Lett., 32, 692-695, 2022
[56] Cheng, C., Interpretation of Josephson junction fluctuations at very low temperatures by superfluid flow equations, Appl. Phys. Lett., 122, Article 192606 pp., 2023
[57] Olaya, D. I., Nb/a-Si/Nb Josephson junctions for high-density superconducting circuits, Appl. Phys. Lett., 122, Article 182601 pp., 2023
[58] Yan, K., Intrinsically shunted Josephson junctions with high characteristic voltage based on epitaxial NbN/TaN/NbN trilayer, Appl. Phys. Lett., 119, Article 152602 pp., 2021
[59] Kruchinin, S. P.; Klepikov, V. F.; Novikov, V. E.; Kruchinin, D. S., Nonlinear current oscillations in the fractal Josephson junction, Mater. Sci. Pol., 23, 1009-1012, 2005
[60] Ramadoss, J.; Ngongiah, I. K.; Chamgoué, A. C.; Kingni, S. T.; Rajagopal, K., Fractal resistive – capacitive – inductive shunted Josephson junction : theoretical investigation and microcontroller implementation, Physica A, 611, 2023, 128460-13 · Zbl 1507.82085
[61] Ramakrishnan, B.; Tamba, V. K.; Natiq, H.; Tsafack, A. S.K.; Karthikeyan, A., Dynamical analysis of autonomous Josephson junction jerk oscillator with cosine interference term embedded in FPGA and investigation of its collective behavior in a network, Eur. Phys. J. B, 95, 1-12, 2022
[62] Kingni, S. T.; Cheukem, A.; Chamgoué, A. C.; Kamga, F. T., Analysis of Josephson junction with topologically nontrivial barrier, Eur. Phys. J. B, 93, 143-147, 2020
[63] Izhikevich, E. M., Simple model of spiking neurons, IEEE Trans. neural networks, 14, 1569-1572, 2003
[64] Izhikevich, E. M., Dynamical Systems in Neuroscience, 2007, MIT press
[65] Dana, S. K., Spiking and bursting in Josephson junction, IEEE Trans. Circuits Syst. II Express Briefs, 53, 1031-1034, 2006
[66] Dana, S. K.; Sengupta, D. C.; Edoh, K. D., Chaotic dynamics in Josephson junction, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 48, 990-996, 2001
[67] Ramakrishnan, B., Image encryption with a Josephson junction model embedded in FPGA, Multimed. Tools Appl., 81, 23819-23843, 2022
[68] Ambika, G., Crisis-induced chaos in Josephson tunnel junctions, J. Phys. Condens. Matter, 4, 4829-4838, 1992
[69] Ayena, W. S.C.; Venkatesh, J.; Ainamon, C.; Ngongiah, I. K.; Sekhar, D. C.; Rajagopal, K., Piecewise nonlinear resistor-capacitor shunted Josephson junction circuit: dynamical and microcontroller implementation probing, Phys. Scr., 99, 2024, 015236-12
[70] Ramaswamy, R.; Sinha, S.; Gupte, N., Targeting chaos through adaptive control, Phys. Rev. E, 57, R2507-R2510, 1998
[71] Pellegrino, M. M.; Scheeres, D. J.; Streetman, B. J., The feasibility of targeting chaotic regions in the GNSS regime, J. Astronaut. Sci., 68, 553-584, 2021
[72] Li, C.; Sprott, J. C., How to bridge attractors and repellors, Int. J. Bifurc. Chaos, 27, 2017, 1750149-11 · Zbl 1380.37057
[73] Li, C.; Gu, Z.; Liu, Z.; Jafari, S.; Kapitaniak, T., Constructing chaotic repellors, Chaos Solitons Fractals, 142, 110544-110548, 2021 · Zbl 1496.37034
[74] Li, C.; Sun, J.; Sprott, J. C.; Lei, T., Hidden attractors with conditional symmetry, Int. J. Bifurc. Chaos, 30, 2020, 2030042-14 · Zbl 1455.37027
[75] Li, C.; Sprott, J. C.; Hu, W.; Xu, Y., Infinite multistability in a self-reproducing chaotic system, Int. J. Bifurc. Chaos, 27, 2017, 1750160-11 · Zbl 1383.37026
[76] Li, C.; Lu, T.; Chen, G.; Xing, H., Doubling the coexisting attractors, Chaos An Interdiscip. J. Nonlinear Sci., 29, 051102-051108, 2019 · Zbl 1415.34100
[77] Bishop, A. R.; Fesser, K.; Lomdahl, P. S.; Trullinger, S. E., Influence of solitons in the initial state on chaos in the driven damped sine-Gordon system, Physica D, 7, 259-279, 1983 · Zbl 1194.35344
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.