×

Fractal resistive-capacitive-inductive shunted Josephson junction: theoretical investigation and microcontroller implementation. (English) Zbl 1507.82085

Summary: The paper captures the analytical and numerical investigations of the fractal resistive-capacitive-inductive shunted Josephson junction (FRCLSJJ) and its microcontroller implementation (MCI). The rate equations of FRCLSJJ are established and based on the Routh-Hurwitz criterion, two equilibrium points are reported with one unconditionally stable and the other unstable for the direct current used for junction excitation less than or equal to one. When this current is greater than one, the FRCLSJJ exhibits no equilibrium point. The contribution of fractal parameters to the dynamics of FRCLSJJ is investigated on fast bursting, regular spiking, relaxation behaviors, and periodic bursting. The FRCLSJJ is characterized by fine dynamics such as different presentations of complex behaviors, the coexistence of periodic and chaotic hidden attractors, chaotic hidden attractors, antimonotonicity, periodic attractors, and periodic and chaotic bubble hidden attractors for varying system parameters. And in the last section of the investigation, the MCI of FRCSJJ is realized with the results establishing a qualitative agreement with numerically simulated results.

MSC:

82D55 Statistical mechanics of superconductors
35B41 Attractors
28A80 Fractals
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
80M99 Basic methods in thermodynamics and heat transfer
Full Text: DOI

References:

[1] Ngongiah, I. K.; Ramakrishnan, B.; Njitacke, Z. T.; Kuiate, G. F.; Kingni, S. T., Resistive-capacitive shunted Josephson junction with unharmonic current-phase relation: Analysis and microcontroller implementation, Phys. A, 603, 127757-1277510 (2022) · Zbl 1527.78017
[2] Kouami, N. M.; Nana, B.; Woafo, P., Analysis of array nanoelectromechanical beams driven by an electrical line of Josephson junctions, Phys. C, 574, 1-7 (2020)
[3] Tinkham, M.; Beasley, M. R.; Larbalestier, D. C.; Clark, A. F.; Finnemore, D. K., Workshop on Problems in Superconductivity (1983), Copper Mountain: Copper Mountain Colorado
[4] Tinkham, M., Introduction to Superconductivity (1996), McGraw-Hill: McGraw-Hill New York
[5] Ramadoss, J.; Ngongiah, I. K.; Chamgoué, A. C.; Mboupda Pone, J. R.; Rajagopal, K.; Kingni, S. T., Josephson junction model with cosine interference term: Analysis, microcontroller implementation, and network analysis, Phys. Scr., 96, 1252321-12523212 (2021)
[6] Ngongiah, I. K.; Ramakrishnan, B.; Natiq, H.; Pone, J. R.M.; Kuiate, G. F., Josephson junction based on high critical-temperature superconductors: analysis, microcontroller implementation, and suppression of coexisting and chaotic attractors, Eur. Phys. J. B, 95, 1-13 (2022)
[7] Kingni, S. T.; Cheukem, A.; Chamgoué, A. C.; Kamga, F. T., Analysis of Josephson junction with topologically nontrivial barrier, Eur. Phys. J. B, 93, 143-147 (2020)
[8] Serway, R. A.; Faughn, J. S.; Vuille, C., College Physics (2008), Brooks Cole
[9] F. Nori, Designing quantum-information-processing superconducting qubit circuits that exhibit lasing and other atomic-physics-like phenomena on a chip, in: APS March Meet. Abstr.H15-001, 2008.
[10] Clarke, J.; Wilhelm, F. K., Superconducting quantum bits, Nature, 453, 1031-1042 (2008)
[11] Machida, M.; Koyama, T., Localized rotating-modes in capacitively coupled intrinsic Josephson junctions: Systematic study of branching structure and collective dynamical instability, Phys. Rev. B, 70, 245231-245236 (2004)
[12] Suzuki, M.; Hayashi, M.; Ebisawa, H., Nonlinear dynamics and resistive transition in intrinsic Josephson junctions, J. Phys. Chem. Solids, 69, 3253-3256 (2008)
[13] Chitra, R. N.; Kuriakose, V. C., Phase synchronization in an array of driven Josephson junctions, PACS, 682022, 1-13 (2008) · Zbl 1306.34079
[14] Pozzo, E. N.; Domınguez, D., Fidelity and quantum chaos in the mesoscopic device for the Josephson flux qubit, Phys. Rev. Lett., 98, 570061-570064 (2007)
[15] Kingni, S. T.; Rajagopal, K.; Çiçek, S.; Cheukem, A.; Tamba, V. K.; Kuiate, G. F., Dynamical analysis, FPGA implementation and its application to chaos-based random number generator of a fractal Josephson junction with unharmonic current-phase relation, Eur. Phys. J. B, 93, 1-11 (2020) · Zbl 1516.37039
[16] Izhikevich, E. M., Neural excitability, spiking and bursting, Int. J. Bifurc. Chaos, 10, 1171-1266 (2000) · Zbl 1090.92505
[17] Izhikevich, E. M., Simple model of spiking neurons, IEEE Trans. Neural Netw., 14, 1569-1572 (2003)
[18] Goldbeter, A.; Gonze, D.; Houart, G.; Leloup, J. C.; Halloy, J.; Dupont, G., From simple to complex oscillatory behavior in metabolic and genetic control networks, Chaos, 11, 247-260 (2001) · Zbl 1023.92009
[19] Zhu, J.-X.; Balatsky, A., Josephson current in the presence of a precessing spin, Phys. Rev. B, 67, Article 174505 pp. (2003)
[20] Sugahara, M.; Kruchinin, S., Controlled not gate based on a two-layer system of the fractional quantum hall effect, Modern Phys. Lett. B, 15, 473-477 (2001)
[21] Kruchinin, S. P.; Klepikov, V. F.; Novikov, V. E.; Kruchinin, D. S., Nonlinear current oscillations in the fractal Josephson junction, Mater. Sci. Pol., 23, 1009-1012 (2005)
[22] Kitamura, T.; Yokoyama, M., Hole drift mobility and chemical structure of charge-transporting hydrazone compounds, J. Appl. Phys., 69, 821-826 (1991)
[23] Kruchinin, S.; Novikov, S.; Klepikov, V., Nonlinear current oscillations in a Josephson junction with fractal radioisotope composite, Metrol. Meas. Syst. XV, 3, 381-383 (2008)
[24] Olemskoi, A. I.; Klepikov, V. F., Theory of spatiotemporal pattern in nonequilibrium systems, Phys. Rep., 338, 571-677 (2001) · Zbl 1097.82531
[25] Welba, C., Josephson junction model: FPGA implementation and chaos-based encryption of sEMG signal through image encryption technique, Complexity, 2022, 1-14 (2022)
[26] Rajagopal, K. J.P. S.; Roy, B. K.; Karthikeyan, A., Dissipative and conservative chaotic nature of a new quasi-periodically forced oscillator with megastability, Chinese J. Phys., 58, 263-272 (2019) · Zbl 07822252
[27] Uchida, A.; Davis, P.; Itaya, S., Generation of information-theoretic secure keys using a chaotic semiconductor laser, Appl. Phys. Lett., 83, 3213-3215 (2003)
[28] Sugiura, T.; Yamanashi, Y.; Yoshikawa, N., Demonstration of 30 Gbit/s generations of superconductive true random number generator, IEEE Trans. Appl. Supercond., 21, 843-846 (2010)
[29] Kennedy, M. P.; Rovatti, R.; Setti, G.; Raton, B., Chaotic Electronics in Telecommunications (2000), CRC: CRC Boca Raton
[30] Kautz, R. L., Chaotic states of RF-biased Josephson junctions, J. Appl. Phys., 52, 6241-6246 (1981)
[31] Kornev, V. K.; Semenov, V. K., Chaotic and stochastic phenomena in superconducting quantum interferometers, IEEE Trans. Magn., MAG-19, 633-636 (1983)
[32] Kingni, S. T.; Kuiate, G. F.; Tamba, V. K.; Monwanou, A. V.; Bio, J.; Orou, C., Analysis of a fractal Josephson junction with unharmonic current-phase relation, Supercond. Nov. Magn., 32, 2295-2301 (2019)
[33] Rajagopal, K.; Kingni, S. T.; Khalaf, A. J.M.; Shekofteh, Y.; Nazarimehr, F., Coexistence of attractors in a simple chaotic oscillator with fractional-order-memristor component: analysis, FPGA implementation, chaos control, and synchronization, Eur. Phys. J. Spec. Top., 228, 2035-2051 (2019)
[34] Karthikeyan, A.; Cimen, M. E.; Akgul, A.; Boz, A. F.; Rajagopal, K., Persistence and coexistence of infinite attractors in a fractal Josephson junction resonator with unharmonic current phase relation considering feedback flux effect, Nonlinear Dynam., 103, 1979-1998 (2021)
[35] Likharev, K. K., Dynamics of Josephson Junction and Circuits (1986), Gordon Breach: Gordon Breach New York
[36] Dana, S. K.; Sengupta, D. C.; Edoh, K. D., Chaotic dynamics in Josephson junction, IEEE Trans. Circuits Syst. I, 48, 990-996 (2001)
[37] Neumann, E.; Pikovsky, A., Slow-fast dynamics in Josephson junctions, Eur. Phys. J. B, 34, 293-303 (2003)
[38] Kingni, S. T.; Kuiate, G. F.; Kengne, R.; Tchitnga, R.; Woafo, P., Analysis of a no Equilibrium Linear Resistive-Capacitive-Inductance Shunted Junction Model, Dynamics, Synchronization, and Application to Digital Cryptography in its Fractional-Order Form 2017, 1-12 (2017), Wiley: Wiley Hindawi Complex · Zbl 1377.93116
[39] Ramakrishnan, B.; Tabejieu, L. M.A.; Ngongiah, I. K.; Kingni, S. T.; Siewe, R. T.; Rajagopal, K., Suppressing chaos in Josephson junction model with coexisting attractors and investigating its collective behavior in a network, J. Supercond. Nov. Magn., 34, 2761-2769 (2021)
[40] Yang, X. S.; Li, Q., A computer-assisted proof of chaos in Josephson junctions, Chaos Solitons Fractals, 27, 25-30 (2006) · Zbl 1083.37034
[41] Dana, S. K., Spiking and bursting in Josephson junction, IEEE Trans. Circuits Syst. II, 53, 1031-1034 (2006)
[42] Vincent, U. E.; Ucar, A.; Laoye, J. A.; Kareem, S. O., Control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design, Phys. C Supercond., 468, 374-382 (2008)
[43] Ngatcha, D. T.; Oumate, A. A.; Tsafack, A. S.K.; Kingni, S. T., Dynamical analysis and microcontroller implementation of linear resistor-capacitor shunted Josephson junction model, Chaos Theory Appl., 3, 55-58 (2021)
[44] Kruchinin, S.; Novikov, S.; Klepikov, V., Nonlinear current oscillations in a Josephson junction with fractal radioisotope composite, Metrol. Meas. Syst. XV, 3, 381-383 (2008)
[45] Canturk, M.; Askerzade, I. N., Chaotic dynamics of a fractal Josephson junction, J. Supercond. Nov. Magn., 28, 303-307 (2014)
[46] Kingni, S. T.; Rajagopal, K.; Tamba, V. K.; Ainamon, C.; Orou, C. B.J., Analysis and FPGA implementation of an autonomous Josephson junction snap oscillator, Eur. Phys. J. B, 227, 1-8 (2019) · Zbl 1516.94074
[47] Ngongiah, I. K.; Ramakrishnan, B.; Njitacke, Z. T.; Kuiate, G. F.; Kingni, S. T., Dynamical analysis and microcontroller implementation of fractal resistive-capacitive shunted Josephson junction, Phys. Scr., 97, 125205-1252012 (2022)
[48] Iansiti, M.; Qing, H.; Westervelt, R. M.; Tinkham, M., Noise and chaos in a fractal basin boundary regime of a Josephson junction, Phys. Rev. Lett., 55, 746-749 (1985)
[49] Dana, S. K.; Sengupta, D. C.; Edoh, K. D., Chaotic dynamics in Josephson junction, IEEE Trans. Circuits Syst. I, 48, 990-996 (2001)
[50] Cawthorne, A. B.; Whan, C. B.; Lobb, C. J., Complex dynamics of resistively and inductively shunted Josephson junctions, J. Appl. Phys., 84, 1126-1132 (1998)
[51] Dana, S. K.; Sengupta, D. C.; Hu, C.-K., Spiking and bursting in Josephson junction, IEEE Trans. Circuits Syst. II, 53, 1031-1034 (2006)
[52] Bennettin, G.; Galgani, L.; Strelcyn, J. M., Kolgoromov entropy and numerical experiments, Phys. Rev. A, 14, 2338-2345 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.