×

Effective results for unit points on curves over finitely generated domains. (English) Zbl 1371.11106

Summary: Let \(A\) be a commutative domain of characteristic 0 which is finitely generated over \(\mathbb{Z}\) as a \(\mathbb{Z}\)-algebra. Denote by \(A^*\) the unit group of \(A\) and by \(\overline{K}\) the algebraic closure of the quotient field \(K\) of \(A\). We shall prove effective finiteness results for the elements of the set \[ \mathcal{C}:=\{ (x,y)\in (A^*)^2 \mid F(x,y)=0 \} \] where \(F(X,Y)\) is a non-constant polynomial with coefficients in \(A\) which is not divisible over \(\overline{K}\) by any polynomial of the form \(X^{m}Y^{n}-\alpha\) or \(X^{m}-\alpha Y^{n}\), with \(m, n\in\mathbb{Z}_{\geq0}\), \(\max(m,n)>0\), \(\alpha\in\overline{K}^*\). This result is a common generalisation of effective results of J.-H. Evertse and K. Győry [Math. Proc. Camb. Philos. Soc. 154, No. 2, 351–380 (2013; Zbl 1332.11040)] on \(S\)-unit equations over finitely generated domains, of E. Bombieri and W. Gubler [Heights in Diophantine geometry. Cambridge: Cambridge University Press (2006; Zbl 1115.11034)] on the equation \(F(x, y) = 0\) over \(S\)-units of number fields, and it is an effective version of S. Lang’s general but ineffective theorem [Publ. Math., Inst. Hautes Étud. Sci. 6, 319–335 (1960; Zbl 0112.13402)] on this equation over finitely generated domains. The conditions that \(A\) is finitely generated and \(F\) is not divisible by any polynomial of the above type are essentially necessary.

MSC:

11G20 Curves over finite and local fields
11D57 Multiplicative and norm form equations
13B25 Polynomials over commutative rings
13P15 Solving polynomial systems; resultants
11G50 Heights
14G05 Rational points
14H25 Arithmetic ground fields for curves
Full Text: DOI

References:

[1] [1]M.AschenbrennerIdeal membership in polynomial rings over the integers. J. Amer. Math. Soc.17 (2004), 407-442.10.1090/S0894-0347-04-00451-52051617 · Zbl 1099.13045 · doi:10.1090/S0894-0347-04-00451-5
[2] [2]A.Bérczes, J.-H.Evertse and K.GyőryEffective results for hyper- and superelliptic equations over number fields. Publ. Math. Debrecen82 (2013), 727-756.3066441 · Zbl 1274.11085
[3] [3]A.Bérczes, J.-H.Evertse and K.GyőryEffective results for Diophantine equations over finitely generated domains. Acta Arith.163 (2014), 71-100.10.4064/aa163-1-63194058 · Zbl 1312.11019 · doi:10.4064/aa163-1-6
[4] [4]A.Bérczes, J.-H.Evertse, K.Győry and C.PontreauEffective results for points on certain subvarieties of tori, Math. Proc. Camb. Phil. Soc.147 (2009), 69-94.10.1017/S030500410900231XS030500410900231X · Zbl 1177.11054 · doi:10.1017/S030500410900231X
[5] [5]E.Bombieri and W.Gubler, Heights in Diophantine Geometry (Cambridge University Press, Cambridge, 2006). · Zbl 1115.11034
[6] [6]B.BrindzaOn the equation f(x) = y^m over finitely generated domains. Acta Math. Hungar.53 (1989), 377-383.10.1007/BF019533741014920 · Zbl 0691.10006 · doi:10.1007/BF01953374
[7] [7]B.BrindzaThe Catalan equation over finitely generated integral domains. Publ. Math. Debrecen42 (1993), 193-198.1229667 · Zbl 0807.11020
[8] [8]B.Brindza and Á.PintérOn equal values of binary forms over finitely generated fields. Publ. Math. Debrecen46 (1995), 339-347.1336374 · Zbl 0867.11014
[9] [9]B.Brindza, A.Pintér and J.VégsőThe Schinzel-Tijdeman equation over function fields. C.R. Math. Rep. Acad. Sci. Canada16 (1994), 53-57. · Zbl 0815.11017
[10] [10]W. D.Brownawell and D. W.MasserVanishing sums in function fields. Math. Proc. Camb. Phil. Soc.100 (1986), 427-434.10.1017/S0305004100066184S0305004100066184 · Zbl 0612.10010 · doi:10.1017/S0305004100066184
[11] [11]Y.Bugeaud and K.GyőryBounds for the solutions of unit equations. Acta Arith.74 (1996), 67-80.1367579 · Zbl 0861.11023
[12] [12]J.-H.Evertse and K.GyőryEffective results for unit equations over finitely generated integral domains. Math. Proc. Camb. Phil. Soc.154 (2013), 351-380.10.1017/S0305004112000606S0305004112000606 · Zbl 1332.11040 · doi:10.1017/S0305004112000606
[13] [13]K.GyőrySur les polynômes à coefficients entiers et de dicriminant donné II. Publ. Math. Debrecen21 (1974), 125-144.0437490 · Zbl 0303.12001
[14] [14]K.GyőryOn the number of solutions of linear equations in units of an algebraic number field. Comment. Math. Helv.54 (1979), 583-600.10.1007/BF025662940552678 · Zbl 0437.12004 · doi:10.1007/BF02566294
[15] [15]K.GyőryBounds for the solutions of norm form, discriminant form and index form equations in finitely generated integral domains. Acta Math. Hungar.42 (1983), 45-80.10.1007/BF019605510716553 · Zbl 0528.10014 · doi:10.1007/BF01960551
[16] [16]K.GyőryEffective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains. J. Reine Angew. Math.346 (1984), 54-100.0727397 · Zbl 0519.13008
[17] [17]K.Győry and K.YuBounds for the solutions of S-unit equations and decomposable form equations. Acta Arith.123 (2006), 9-41.10.4064/aa123-1-22232500 · Zbl 1163.11026 · doi:10.4064/aa123-1-2
[18] [18]G.HermannDie Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann.95 (1926), 736-788.10.1007/BF01206635 · JFM 52.0127.01 · doi:10.1007/BF01206635
[19] [19]M.Hindry and J. H.SilvermanDiophantine Geometry. Graduate Texts in Mathematics, vol. 201 (Springer-Verlag, New York, 2000).10.1007/978-1-4612-1210-2 · Zbl 0948.11023 · doi:10.1007/978-1-4612-1210-2
[20] [20]S.Lang Integral points on curves. Inst. Hautes Études Sci. Publ. Math. (1960), 27-43.
[21] [21]S.LouboutinExplicit bounds for residues of Dedekind zeta functions, values of L-functions at s = 1, and relative class numbers. J. Number Theory85 (2000), 263-282.10.1006/jnth.2000.25451802716 · Zbl 0967.11049 · doi:10.1006/jnth.2000.2545
[22] [22]K.MahlerZur Approximation algebraischer Zahlen. I. Math. Ann.107 (1933), 691-730.10.1007/BF01448915 · Zbl 0006.10502 · doi:10.1007/BF01448915
[23] [23]C. J.ParryThe p-adic generalisation of the Thue-Siegel theorem. Acta Math.83 (1950), 1-100.10.1007/BF023926330037875 · Zbl 0039.27501 · doi:10.1007/BF02392633
[24] [24]C.SiegelApproximation algebraischer Zahlen. Math. Z.10 (1921), 173-213.10.1007/BF01211608 · JFM 48.0163.07 · doi:10.1007/BF01211608
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.