×

Effective results for division points on curves in \(\mathbb{G}_m^2\). (English. French summary) Zbl 1395.11104

Summary: Let \(A : = \mathbb{Z} [z_1, \ldots, z_r] \supset \mathbb{Z}\) be a finitely generated integral domain over \(\mathbb{Z}\), let \(K\) denote its quotient field, and \(K^\ast\) the multiplicative group of non-zero elements of \(K\). Let \(\Gamma\) be a finitely generated subgroup of \(K^\ast\), and let \(\overline{\Gamma}\) denote the division group of \(\Gamma\). Let \(F(X, Y) \in A [X, Y]\) be a polynomial. In [Astérisque 24–25, 187–210 (1975; Zbl 0315.14005)] P. Liardet proved that under some natural conditions on \(F\) the equation \[ F(x, y) = 0\quad \text{with}\quad x, y \in \overline{\Gamma} \] has only finitely many solutions. The proof of Liardet was ineffective. In 2009 an effective version of Liardet’s Theorem has been proved by the author et al. [Math. Proc. Camb. Philos. Soc. 147, No. 1, 69–94 (2009; Zbl 1177.11054)] in the case when \(\Gamma \subset \overline{\mathbb Q}\). In the present paper an effective version of Liardet’s theorem is proved in the general case.

MSC:

11G35 Varieties over global fields
11G50 Heights
14G25 Global ground fields in algebraic geometry
Full Text: DOI

References:

[1] M. Aschenbrenner, Ideal membership in polynomial rings over the integers, J. Amer. Math. Soc., 17 (2004), 407-442. · Zbl 1099.13045
[2] A. Bérczes, Effective results for unit points on curves over finitely generated domains, Math. Proc. Cambridge Phil. Soc., 158 (2015), 331-353. · Zbl 1371.11106
[3] A. Bérczes, J.-H. Evertse and K. Győry, Effective results for linear equations in two unknowns from a multiplicative division group, Acta Arith., 136 (2009), 331-349. · Zbl 1234.11034
[4] A. Bérczes, J.-H. Evertse and K. Győry, Effective results for Diophantine equations over finitely generated domains, Acta Arith., 163 (2014), 71-100. · Zbl 1312.11019
[5] A. Bérczes, J.-H. Evertse, K. Győry and C. Pontreau, Effective results for points on certain subvarieties of tori, Math. Proc. Cambridge Phil. Soc., 147 (2009), 69-94. · Zbl 1177.11054
[6] F. Beukers and C. J. Smyth, Cyclotomic points on curves, in Number theory for the millennium, I (Urbana, IL, 2000, A K Peters, Natick, MA, (2002), 67-85. · Zbl 1029.11009
[7] E. Bombieri and W. Gubler, Heights in Diophantine geometry, Cambridge University Press, Cambridge, (2006). · Zbl 1130.11034
[8] B. Brindza, On the equation \(f(x)=y^m\) over finitely generated domains, Acta Math. Hungar., 53 (1989), 377-383. · Zbl 0691.10006
[9] B. Brindza, The Catalan equation over finitely generated integral domains, Publ. Math. Debrecen, 42 (1993), 193-198. · Zbl 0807.11020
[10] B. Brindza and Á. Pintér, On equal values of binary forms over finitely generated fields, Publ. Math. Debrecen, 46 (1995), 339-347. · Zbl 0867.11014
[11] B. Brindza, A. Pintér and J. Végső, The Schinzel-Tijdeman equation over function fields, C.R. Math. Rep. Acad. Sci. Canada, 16 (1994), 53-57. · Zbl 0815.11017
[12] J.-H. Evertse and K. Győry, Effective results for unit equations over finitely generated integral domains, Math. Proc. Camb. Phil. Soc., 154 (2013), 351-380. · Zbl 1332.11040
[13] K. Győry, Bounds for the solutions of norm form, discriminant form and index form equations in finitely generated integral domains, Acta Math. Hungar., 42 (1983), 45-80. · Zbl 0528.10014
[14] K. Győry, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math., 346 (1984), 54-100. · Zbl 0519.13008
[15] S. Lang, Integral points on curves, Inst. Hautes Études Sci. Publ. Math., (1960), 27-43. · Zbl 0112.13402
[16] S. Lang, Diophantine geometry, Interscience Tracts in Pure and Applied Mathematics, 11, Interscience Publishers (a division of John Wiley & Sons), New York-London, (1962). · Zbl 0115.38701
[17] S. Lang, Division points on curves, Ann. Mat. Pura Appl. (4), 70 (1965), 229-234. · Zbl 0151.27401
[18] S. Lang, Report on diophantine approximations, Bull. Soc. Math. France, 93 (1965), 177-192. · Zbl 0135.10802
[19] S. Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, (1983). · Zbl 0528.14013
[20] P. Liardet, Sur une conjecture de Serge Lang, C. R. Acad. Sci. Paris Sér. A, 279 (1974), 435-437. · Zbl 0315.14006
[21] P. Liardet, Sur une conjecture de Serge Lang, in Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), Soc. Math. France, Paris, (1975), 187-210. Astérisque, Nos. 24-25. · Zbl 0315.14005
[22] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6 (1962), 64-94. · Zbl 0122.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.