×

Hybrid nanofluid flow in a porous medium with second-order velocity slip, suction and heat absorption. (English) Zbl 07811510

Summary: The foremost objective of this study is to reflect the behaviour of hybrid nanofluid towards a permeable porous medium, with consideration of second-order velocity slip and heat absorption impacts on the fluid flow. Two distinct fluids of copper (Cu) and aluminium oxide (\(\mathrm{Al_2O}_3\)) are reviewed in this study to work out as a hybrid nanofluid flow. The equations of boundary layer flow in the form of partial differential equations are reduced to a system of ODEs by conducting a similarity transformation technique, and the findings that obtained from this study are presented in the respective tables and figures. The effects of involving parameters such as suction, porous medium permeability, heat absorption and second order velocity slip are perceived, as well as our intention in observing the impact of traditional nanofluid and hybrid nanofluid on the fluid flow. Our findings revealed that the hybrid Cu-\(\mathrm{Al_2O}_3\)/water nanofluid performs well on the fluid flow behaviour against the mono \(\mathrm{Al_2O}_3\)/water nanofluid. Moreover, the participating parameters of porous medium permeability, suction and nanoparticle volume fraction are said to improve the boundary layer thickness, while second-order velocity slip parameter is deemed to decay the fluid flow.

MSC:

76-XX Fluid mechanics
35-XX Partial differential equations
Full Text: DOI

References:

[1] S. Abu Bakar, N. S. Wahid, N. M. Arifin & N. S. Khashiie (2022). The flow of hybrid nanofluid past a permeable shrinking sheet in a darcy-forchheimer porous medium with second-order velocity slip. Waves in Random and Complex Media, pp. 1-18. https://doi.org/ 10.1080/17455030.2021.2020375. · doi:10.1080/17455030.2021.2020375
[2] S. A. Al-Sanea (2004). Mixed convection heat transfer along a continuously moving heated vertical plate with suction or injection. International Journal of Heat and Mass Transfer, 47(6-7), 1445-1465. https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.016. · Zbl 1045.76555 · doi:10.1016/j.ijheatmasstransfer.2003.09.016
[3] S. U. S. Choi & J. A. Eastman (1995). Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, United States.
[4] Y.-M. Chu, K. S. Nisar, U. Khan, H. Daei Kasmaei, M. Malaver, A. Zaib & I. Khan (2020). Mixed convection in MHD water-based molybdenum disulfide-graphene oxide hybrid nanofluid through an upright cylinder with shape factor. Water, 12(6), 1723. https://doi. org/10.3390/w12061723. · doi:10.3390/w12061723
[5] S. Das, R. N. Jana & O. D. Makinde (2017). MHD flow of Cu-Al 2 O 3 /water hybrid nanofluid in porous channel: Analysis of entropy generation. In Defect and Diffusion Forum, pp. 42-61. Scientific.Net, Switzerland.
[6] S. P. A. Devi & S. S. U. Devi (2016). Numerical investigation of hydromagnetic hybrid Cu -Al 2 O 3 /water nanofluid flow over a permeable stretching sheet with suction. Interna-tional Journal of Nonlinear Sciences and Numerical Simulation, 17(5), 249-257. https://doi.org/ 10.1515/ijnsns-2016-0037. · doi:10.1515/ijnsns-2016-0037
[7] K. Ezhil, S. K. Thavada & S. B. Ramakrishna (2020). MHD slip flow and heat transfer of Cu -F e 3 O 4 /ethylene glycol-based hybrid nanofluid over a stretching surface. 11(4), 11956-11968. https://doi.org/10.33263/briac114.1195611968. · doi:10.33263/briac114.1195611968
[8] S. S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinzadeh & D. D. Ganji (2017). Inves-tigation on thermophysical properties of tio2 -Cu/H 2 O hybrid nanofluid transport de-pendent on shape factor in MHD stagnation point flow. Powder Technology, 322, 428-438. https://doi.org/10.1016/j.powtec.2017.09.006. · doi:10.1016/j.powtec.2017.09.006
[9] P. Gokulavani, M. Muthtamilselvan & B. Abdalla (2021). Impact of injection/suction and entropy generation of the porous open cavity with the hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 147, 1-14. https://doi.org/10.1007/s10973-021-10636-2. · doi:10.1007/s10973-021-10636-2
[10] F. Haider, T. Hayat & A. Alsaedi (2021). Flow of hybrid nanofluid through Darcy-Forchheimer porous space with variable characteristics. Alexandria Engineering Journal, 60(3), 3047-3056. https://doi.org/10.1016/j.aej.2021.01.021. · doi:10.1016/j.aej.2021.01.021
[11] Y.-H. Hung, W.-P. Wang, Y.-C. Hsu & T.-P. Teng (2017). Performance evaluation of an air-cooled heat exchange system for hybrid nanofluids. Experimental Thermal and Fluid Science, 81, 43-55. https://doi.org/10.1016/j.expthermflusci.2016.10.006. · doi:10.1016/j.expthermflusci.2016.10.006
[12] W. Ibrahim (2017). Magnetohydrodynamics (MHD) flow of a tangent hyperbolic fluid with nanoparticles past a stretching sheet with second order slip and convective boundary condi-tion. Results in Physics, 7, 3723-3731. https://doi.org/10.1016/j.rinp.2017.09.041. · doi:10.1016/j.rinp.2017.09.041
[13] W. Jamshed, S. U. Devi & K. S. Nisar (2021). Single phase based study of Ag -Cu/EO williamson hybrid nanofluid flow over a stretching surface with shape factor. Physica Scripta, 96(6), 065202. https://doi.org/10.1088/1402-4896/abecc0. · doi:10.1088/1402-4896/abecc0
[14] W. A. Khan & I. Pop (2010). Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/ j.ijheatmasstransfer.2010.01.032. · Zbl 1190.80017 · doi:10.1016/j.ijheatmasstransfer.2010.01.032
[15] L. A. Lund, Z. Omar, S. Dero, I. Khan, D. Baleanu & K. S. Nisar (2020). Magnetized flow of Cu + Al 2 O 3 + H 2 O hybrid nanofluid in porous medium: Analysis of duality and stability. Symmetry, 12(9), 1513. https://doi.org/10.3390/sym12091513. · doi:10.3390/sym12091513
[16] S. Manjunatha, B. A. Kuttan, S. Jayanthi, A. Chamkha & B. Gireesha (2019). Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection. Heliyon, 5(4), e01469. https://doi.org/10.1016/j.heliyon.2019.e01469. · doi:10.1016/j.heliyon.2019.e01469
[17] H.-M. Nieh, T.-P. Teng & C.-C. Yu (2014). Enhanced heat dissipation of a radiator using oxide nano-coolant. International Journal of Thermal Sciences, 77, 252-261. https://doi.org/10.1016/ j.ijthermalsci.2013.11.008. · doi:10.1016/j.ijthermalsci.2013.11.008
[18] I. S. Oyelakin, S. Mondal & P. Sibanda (2016). Unsteady Casson nanofluid flow over a stretch-ing sheet with thermal radiation, convective and slip boundary conditions. Alexandria Engi-neering Journal, 55(2), 1025-1035. https://doi.org/10.1016/j.aej.2016.03.003. · doi:10.1016/j.aej.2016.03.003
[19] S. Suresh, K. P. Venkitaraj, P. Selvakumar & M. Chandrasekar (2011). Synthesis of Al 2 O 3 -Cu/water hybrid nanofluids using two step method and its thermo physical prop-erties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388(1-3), 41-48. https://doi.org/10.1016/j.colsurfa.2011.08.005. · doi:10.1016/j.colsurfa.2011.08.005
[20] A. Tulu & W. Ibrahim (2021). Effects of second-order slip flow and variable viscosity on natural convection flow of CN T s -F e 3 O 4 /water hybrid nanofluids due to stretching sur-face. Mathematical Problems in Engineering, 2021, Article ID: 8407194. https://doi.org/10. 1155/2021/8407194. · doi:10.1155/2021/8407194
[21] M. Usman, M. Hamid, T. Zubair, R. U. Haq & W. Wang (2018). Cu -Al 2 O 3 /water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via lsm. International Journal of Heat and Mass Transfer, 126, 1347-1356. https://doi.org/10.1016/j.colsurfa.2011.08.005. · doi:10.1016/j.colsurfa.2011.08.005
[22] B. Venkateswarlu & P. V. Satya Narayana (2021). Cu -Al 2 O 3 /H 2 O hybrid nanofluid flow past a porous stretching sheet due to temperatue-dependent viscosity and viscous dissipa-tion. Heat Transfer, 50(1), 432-449. https://doi.org/10.1002/htj.21884. · doi:10.1002/htj.21884
[23] I. Waini, A. Ishak, T. Groşan & I. Pop (2020). Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. International Communications in Heat and Mass Transfer, 114, 104565. https://doi.org/10.1016/j.icheatmasstransfer.2020.104565. · doi:10.1016/j.icheatmasstransfer.2020.104565
[24] L. Wu (2008). A slip model for rarefied gas flows at arbitrary Knudsen number. Applied Physics Letters, 93(25), 253103. https://doi.org/10.1063/1.3052923. · doi:10.1063/1.3052923
[25] L. Yan, S. Dero, I. Khan, I. A. Mari, D. Baleanu, K. S. Nisar, E.-S. M. Sherif & H. S. Abdo (2020). Dual solutions and stability analysis of magnetized hybrid nanofluid with joule heating and multiple slip conditions. Processes, 8(3), 332. https://doi.org/10.3390/pr8030332. · doi:10.3390/pr8030332
[26] U. Yashkun, K. Zaimi, N. A. A. Bakar, A. Ishak & I. Pop (2020). MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect. International Journal of Numerical Methods for Heat & Fluid Flow, 31(3), 1014-1031. https://doi.org/10.1108/ HFF-02-2020-0083. · doi:10.1108/HFF-02-2020-0083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.