×

Soret-dufour effects on the waterbased hybrid nanofluid flow with nanoparticles of alumina and copper. (English) Zbl 07828473

Summary: The two-dimensional mathematical model of water-based hybrid nanofluid, where the nanoparticles of the model are alumina (\(\mathrm{Al_2O}_3\)) and copper (Cu) is analyzed in this article. It describes the heat and mass transfer which are induced by concentration and temperature differences, respectively. The current mathematical model extended the works by implementing both directions of moving sheet in the boundary conditions: stretching and shrinking, and use the exponential variations of the sheet velocity, temperature, and concentration of the hybrid nanofluid at the sheet. The final numerical solutions can be obtained by implementing Matlab bvp4c, which involves the step of choosing the most reliable solution in an actual fluid situation. This selection technique on numerical solutions is known as stability analysis and only needs to apply when more than one numerical solution appears in the Matlab bvp4c program. Finally, the controlling parameters such as nanoparticle solid volume fraction, suction, shrinking/stretching, Soret and Dufour cause an increment or decrement in the flow, heat and mass transfer in the hybrid nanofluid. For the stable solution, fluid velocity becomes slower whereas temperature and concentration of the fluid increase when the percentage of Cu, as well as \(\mathrm{Al_2O}_3\), rises into the water. Moreover, in case of local Nusselt number and local Sherwood number it is proved that Soret effect is the opposite phenomenon of Dufour effect.

MSC:

76T20 Suspensions
76S05 Flows in porous media; filtration; seepage
76E06 Convection in hydrodynamic stability
76M99 Basic methods in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow

Software:

bvp4c; Matlab
Full Text: DOI

References:

[1] J. M. N. Abad, R. Alizadeh, A. Fattahi, M. H. Doranehgard, E. Alhajri & N. Karimi (2020). Analysis of transport processes in a reacting flow of hybrid nanofluid around a bluff-body embedded in porous media using artificial neural network and particle swarm optimization. Journal of Molecular Liquids, 313, 113492. https://doi.org/10.1016/j.molliq.2020.113492. · doi:10.1016/j.molliq.2020.113492
[2] M. S. Ahmed & A. M. Elsaid (2019). Effect of hybrid and single nanofluids on the perfor-mance characteristics of chilled water air conditioning system. Applied Thermal Engineering, 163, Article ID 114398. https://doi.org/10.1016/j.applthermaleng.2019.114398. · doi:10.1016/j.applthermaleng.2019.114398
[3] Z. Alhajaj, M. Z. Saghir & M. M. Rahman (2019). Convective heat transfer of mono and hy-brid nanofluid in porous micro-channel: Experimental and numerical approach. Excerpt from the Proceedings of the 2019 COMSOL Conference in Boston,. https://www.comsol.com/paper/ convective-heat-transfer-of-mono-and-hybrid-nanofluid-in-porous-micro-channel-ex-80801.
[4] A. Ali, A. Noreen, S. Saleem, A. Aljohani & M. Awais (2021). Heat transfer analysis of Cu -Al 2 O 3 hybrid nanofluid with heat flux and viscous dissipation. Journal of Thermal Analysis and Calorimetry, 143(3), 2367-2377. https://doi.org/10.1007/s10973-020-09910-6. · doi:10.1007/s10973-020-09910-6
[5] E. H. Aly & I. Pop (2020). MHD flow and heat transfer near stagnation point over a stretch-ing/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid. Powder Technology, 367, 192-205. https://doi.org/10.1016/j.powtec.2020.03.030. · doi:10.1016/j.powtec.2020.03.030
[6] S. A. Bakar, N. M. Arifin, N. Bachok & F. M. Ali (2022). Hybrid nanofluid flow in a porous medium with second-order velocity slip, suction and heat absorption. Malaysian Journal of Mathematical Sciences, 16(2), 257-272. https://doi.org/10.47836/mjms.16.2.06. · Zbl 07811510 · doi:10.47836/mjms.16.2.06
[7] H. Berrehal, S. Dinarvand & I. Khan (2022). Mass-based hybrid nanofluid model for entropy generation analysis of flow upon a convectively-warmed moving wedge. Chinese Journal of Physics, 77, 2603-2616. https://doi.org/10.1016/j.cjph.2022.04.017. · Zbl 07851806 · doi:10.1016/j.cjph.2022.04.017
[8] S. U. Choi & J. A. Eastman. Enhancing thermal conductivity of fluids with nanoparticles. Technical report Argonne National Laboratory, Argonne, IL (United States) 1995. https: //www.osti.gov/biblio/196525.
[9] S. U. Choi. Nanofluids: A new field of scientific research and innovative applications 2008. https://doi.org/10.1080/01457630701850778. · doi:10.1080/01457630701850778
[10] S. Dinarvand (2019). Nodal/saddle stagnation-point boundary layer flow of CuO-Ag/water hybrid nanofluid: a novel hybridity model. Microsystem Technologies, 25(7), 2609-2623. https: //doi.org/10.1007/s00542-019-04332-3. · doi:10.1007/s00542-019-04332-3
[11] S. Dinarvand, S. M. Mousavi, M. Yousefi & M. Nademi Rostami (2022). MHD flow of M gO -Ag/water hybrid nanofluid past a moving slim needle considering dual solutions: An applicable model for hot-wire anemometer analysis. International Journal of Numerical Methods for Heat & Fluid Flow, 32(2), 488-510. https://doi.org/10.1108/HFF-01-2021-0042. · doi:10.1108/HFF-01-2021-0042
[12] S. Dinarvand & A. M. Nejad (2021). Off-centered stagnation point flow of an experimental-based hybrid nanofluid impinging to a spinning disk with low to high non-alignments. International Journal of Numerical Methods for Heat & Fluid Flow, 32(8), 2799-2818. https: //doi.org/10.1108/HFF-09-2021-0637. · doi:10.1108/HFF-09-2021-0637
[13] M. R. Eid (2022). 3-D flow of magnetic rotating hybridizing nanoliquid in parabolic trough solar collector: Implementing Cattaneo-Christov heat flux theory and Centripetal and Cori-olis forces. Mathematics, 10(15), 2605. https://doi.org/10.3390/math10152605. · doi:10.3390/math10152605
[14] U. Farooq, M. I. Afridi, M. Qasim & D. Lu (2018). Transpiration and viscous dissipation effects on entropy generation in hybrid nanofluid flow over a nonlinear radially stretching disk. Entropy, 20(9), 668. https://doi.org/10.3390/e20090668. · doi:10.3390/e20090668
[15] K. Gangadhar, D. N. Bhargavi, T. Kannan, M. Venkata Subba Rao & A. J. Chamkha (2020). Transverse MHD flow of Al 2 O 3 -Cu/H 2 O hybrid nanofluid with active radiation: a novel hybrid model. Mathematical Methods in the Applied Sciences, pp. 1-19. https://doi.org/10. 1002/mma.6671. · doi:10.1002/mma.6671
[16] A. Ghasemian, S. Dinarvand, A. Adamian & M. A. Sheremet (2019). Unsteady general three-dimensional stagnation point flow of a Maxwell/Buongiorno non-Newtonian nanofluid. Journal of Nanofluids, 8(7), 1544-1559. https://doi.org/10.1166/jon.2019.1701. · doi:10.1166/jon.2019.1701
[17] T. Gul, A. Khan, M. Bilal, N. A. Alreshidi, S. Mukhtar, Z. Shah & P. Kumam (2020). Magnetic dipole impact on the hybrid nanofluid flow over an extending surface. Scientific Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-020-65298-1. · doi:10.1038/s41598-020-65298-1
[18] S. D. Harris, D. B. Ingham & I. Pop (2009). Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Media, 77, 267-285. https://doi.org/10.1007/s11242-008-9309-6. · doi:10.1007/s11242-008-9309-6
[19] F. Hoseininejad, S. Dinarvand & M. E. Yazdi (2021). Manninen’s mixture model for conju-gate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure. International Journal of Numerical Methods for Heat & Fluid Flow, 31(5), 1662-1694. https://doi.org/10.1108/HFF-05-2020-0301. · doi:10.1108/HFF-05-2020-0301
[20] N. Iftikhar, A. Rehman, H. Sadaf & S. Iqbal (2019). Study of Al 2 O 3 /copper-water nanopar-ticle shape, slip effects, and heat transfer on steady physiological delivery of MHD hy-brid nanofluid. Canadian Journal of Physics, 97(12), 1239-1252. https://doi.org/10.1139/ cjp-2018-0551. · doi:10.1139/cjp-2018-0551
[21] M. Izady, S. Dinarvand, I. Pop & A. J. Chamkha (2021). Flow of aqueous F e 2 O 3 -CuO hybrid nanofluid over a permeable stretching/shrinking wedge: A development on Falkner-Skan problem. Chinese Journal of Physics, 74, 406-420. https://doi.org/10.1016/j.cjph.2021.10.018. · Zbl 07839833 · doi:10.1016/j.cjph.2021.10.018
[22] B. Jabbaripour, M. Nademi Rostami, S. Dinarvand & I. Pop (2021). Aqueous aluminium-copper hybrid nanofluid flow past a sinusoidal cylinder considering three-dimensional mag-netic field and slip boundary condition. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, pp. 09544089211046434. https://doi.org/10. 1177/09544089211046434. · doi:10.1177/09544089211046434
[23] H. Javadi, J. F. Urchueguia, S. S. Mousavi Ajarostaghi & B. Badenes (2021). Impact of em-ploying hybrid nanofluids as heat carrier fluid on the thermal performance of a borehole heat exchanger. Energies, 14(10), Article ID 2892. https://doi.org/10.3390/en14102892. · doi:10.3390/en14102892
[24] R. Jusoh, K. Naganthran, A. Jamaludin, M. Ariff, M. Basir & I. Pop (2020). Mathematical anal-ysis of the flow and heat transfer of Ag -Cu hybrid nanofluid over a stretching/shrinking surface with convective boundary condition and viscous dissipation. Data Analytics and Ap-plied Mathematics, 1(1), 11-22. https://doi.org/10.15282/daam.v1i01.5105. · doi:10.15282/daam.v1i01.5105
[25] P. Kalidoss, S. G. Venkatachalapathy & S. Suresh (2021). Photothermal performance of hy-brid nanofluids with different base fluids for solar energy applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1-16. https://doi.org/10.1080/15567036. 2021.1936697. · doi:10.1080/15567036.2021.1936697
[26] A. S. Khan, H. Y. Xu & W. Khan (2021). Magnetohydrodynamic hybrid nanofluid flow past an exponentially stretching sheet with slip conditions. Mathematics, 9(24), 3291. https://doi. org/10.3390/math9243291. · doi:10.3390/math9243291
[27] A. Khan, A. Saeed, A. Tassaddiq, T. Gul, P. Kumam, I. Ali & W. Kumam (2021). Bio-convective and chemically reactive hybrid nanofluid flow upon a thin stirring needle with viscous dissi-pation. Scientific Reports, 11(1), Article ID 8066. https://doi.org/10.1038/s41598-021-86968-8. · doi:10.1038/s41598-021-86968-8
[28] U. Khan, Adnan, N. Ahmed, S. T. Mohyud-Din, D. Baleanu, I. Khan & K. S. Nisar (2020). A novel hybrid model for Cu -Al 2 O 3 /H 2 O nanofluid flow and heat transfer in conver-gent/divergent channels. Energies, 13(7), 1686. https://doi.org/10.3390/en13071686. · doi:10.3390/en13071686
[29] L. A. Lund, Z. Omar, I. Khan, A. H. Seikh, E.-S. M. Sherif & K. S. Nisar (2020). Stability analysis and multiple solution of Cu -Al 2 O 3 /H 2 O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation. Journal of Materials Research and Technology, 9(1), 421-432. https://doi.org/10.1016/j.jmrt.2019.10.071. · doi:10.1016/j.jmrt.2019.10.071
[30] L. A. Lund, Z. Omar, J. Raza & I. Khan (2021). Magnetohydrodynamic flow of Cu -F e 3 O 4 /H 2 O hybrid nanofluid with effect of viscous dissipation: dual similarity solu-tions. Journal of Thermal Analysis and Calorimetry, 143, 915-927. https://doi.org/10.1007/ s10973-020-09602-1. · doi:10.1007/s10973-020-09602-1
[31] E. Magyari & B. Keller (1999). Heat and mass transfer in the boundary layers on an ex-ponentially stretching continuous surface. Journal of Physics D: Applied Physics, 32(5), 577. https://dx.doi.org/10.1088/0022-3727/32/5/012. · doi:10.1088/0022-3727/32/5/012
[32] J. Merkin (1986). On dual solutions occurring in mixed convection in a porous medium. Journal of Engineering Mathematics, 20(2), 171-179. https://doi.org/10.1007/BF00042775. · Zbl 0597.76081 · doi:10.1007/BF00042775
[33] M. K. A. Mohamed, H. R. Ong, H. T. Alkasasbeh & M. Z. Salleh (2020). Heat transfer of Ag -Al 2 O 3 /water hybrid nanofluid on a stagnation point flow over a stretching sheet with Newtonian heating. In Journal of Physics: Conference Series, volume 1529 pp. 042085. IOP Publishing. https://doi.org/10.1088/1742-6596/1529/4/042085. · doi:10.1088/1742-6596/1529/4/042085
[34] G. Morini et al. (2008). Viscous dissipation. In Encyclopedia of Microfluidics and Nanofluidics, pp. 2156-2164. Springer,. https://doi.org/10.1007/978-0-387-48998-8_1669. · doi:10.1007/978-0-387-48998-8_1669
[35] K. S. Nisar, U. Khan, A. Zaib, I. Khan & D. Baleanu (2020). Exploration of aluminum and titanium alloys in the stream-wise and secondary flow directions comprising the significant impacts of magnetohydrodynamic and hybrid nanofluid. Crystals, 10(8), 679. https://doi. org/10.3390/cryst10080679. · doi:10.3390/cryst10080679
[36] S. Parvin, S. S. P. M. Isa, N. M. Arifin & F. M. Ali (2020). Dual numerical solutions on mixed convection casson fluid flow due to the effect of the rate of extending and compressing sheet-stability analysis. CFD Letters, 12(8), 76-84. https://akademiabaru.com/submit/index.php/ cfdl/article/view/3279.
[37] S. Parvin, S. S. P. Mohamed Isa, N. M. Arifin & F. Md Ali (2021). The inclined factors of magnetic field and shrinking sheet in Casson fluid flow, heat and mass transfer. Symmetry, 13(3), 373. https://doi.org/10.3390/sym13030373. · doi:10.3390/sym13030373
[38] S. S. K. Raju, M. J. Babu & C. Raju (2021). Irreversibility analysis in hybrid nanofluid flow between two rotating disks with activation energy and cross-diffusion effects. Chinese Journal of Physics, 72, 499-529. https://doi.org/10.1016/j.cjph.2021.03.016. · Zbl 07836264 · doi:10.1016/j.cjph.2021.03.016
[39] M. G. Reddy, P. Padma & B. Shankar (2015). Effects of viscous dissipation and heat source on unsteady mhd flow over a stretching sheet. Ain Shams Engineering Journal, 6(4), 1195-1201. https://doi.org/10.1016/j.asej.2015.04.006. · doi:10.1016/j.asej.2015.04.006
[40] G. Revathi, V. S. Sajja, M. J. Babu, C. S. K. Raju, S. Shehzad & C. Bapanayya (2021). Entropy optimization in hybrid radiative nanofluid (CH 3 OH + SiO 2 + Al 2 O 3 ) flow by a curved stretching sheet with cross-diffusion effects. Applied Nanoscience, 13, 337-351. https://doi. org/10.1007/s13204-021-01679-w. · doi:10.1007/s13204-021-01679-w
[41] N. C. Roy, L. K. Saha & M. Sheikholeslami (2020). Heat transfer of a hybrid nanofluid past a circular cylinder in the presence of thermal radiation and viscous dissipation. AIP Advances, 10(9), 095208. https://doi.org/10.1063/5.0021258. · doi:10.1063/5.0021258
[42] S. Saranya, Q. M. Al-Mdallal & S. Javed (2021). Shifted legendre collocation method for the solution of unsteady viscous-ohmic dissipative hybrid ferrofluid flow over a cylinder. Nanomaterials, 11(6), 1512. https://doi.org/10.3390/nano11061512. · doi:10.3390/nano11061512
[43] M. Shoaib, M. A. Z. Raja, M. T. Sabir, M. Awais, S. Islam, Z. Shah & P. Kumam (2021). Nu-merical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto IIIA technique. Alexandria Engineering Journal, 60(4), 3605-3619. https://doi.org/10.1016/j.aej.2021.02.015. · doi:10.1016/j.aej.2021.02.015
[44] S. Suresh, K. Venkitaraj, P. Selvakumar & M. Chandrasekar (2012). Effect of Al 2 O 3 -Cu/water hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science, 38, 54-60. https://doi.org/10.1016/j.expthermflusci.2011.11.007. · doi:10.1016/j.expthermflusci.2011.11.007
[45] B. Venkateswarlu & P. V. Satya Narayana (2021). Cu-Al 2 O 3 /H 2 O hybrid nanofluid flow past a porous stretching sheet due to temperatue-dependent viscosity and viscous dissipation. Heat Transfer, 50(1), 432-449. https://doi.org/10.1002/htj.21884. · doi:10.1002/htj.21884
[46] I. Waini, A. Ishak & I. Pop (2019). Hybrid nanofluid flow and heat transfer past a per-meable stretching/shrinking surface with a convective boundary condition. In Journal of Physics: Conference Series, volume 1366 pp. 012022. IOP Publishing. https://dx.doi.org/10. 1088/1742-6596/1366/1/012022. · doi:10.1088/1742-6596/1366/1/012022
[47] I. Waini, A. Ishak & I. Pop (2019). Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface. International Journal of Numerical Methods for Heat & Fluid Flow, 29(9), 3110-3127. http://dx.doi.org/10.1108/HFF-01-2019-0057. · doi:10.1108/HFF-01-2019-0057
[48] I. Waini, A. Ishak & I. Pop (2020). Mixed convection flow over an exponentially stretch-ing/shrinking vertical surface in a hybrid nanofluid. Alexandria Engineering Journal, 59(3), 1881-1891. https://doi.org/10.1016/j.aej.2020.05.030. · doi:10.1016/j.aej.2020.05.030
[49] P. Weidman, D. Kubitschek & A. Davis (2006). The effect of transpiration on self-similar boundary layer flow over moving surfaces. International Journal of Engineering Science, 44(11-12), 730-737. https://doi.org/10.1016/j.ijengsci.2006.04.005. · Zbl 1213.76064 · doi:10.1016/j.ijengsci.2006.04.005
[50] N. Zainal, R. Nazar, K. Naganthran & I. Pop (2021). Viscous dissipation and MHD hybrid nanofluid flow towards an exponentially stretching/shrinking surface. Neural Computing and Applications, 33, 11285-11295. https://doi.org/10.1007/s00521-020-05645-5. · doi:10.1007/s00521-020-05645-5
[51] M. Zufar, P. Gunnasegaran, H. M. Kumar & K. C. Ng (2020). Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance. International Journal of Heat and Mass Transfer, 146, Article ID 118887. https://doi.org/10.1016/j.ijheatmasstransfer. 2019.118887. · doi:10.1016/j.ijheatmasstransfer.2019.118887
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.