×

Jack polynomials and affine Yangian. (English) Zbl 1514.81290

Summary: In this paper, we define one kind of new Jack polynomials denoted by \(Jk_\lambda \), which equal the standard Jack polynomials \(P_\lambda^\alpha\) multiplied by a coefficient. We show that the structure constant \(C_{\lambda\mu}^\nu\) in \(Jk_\lambda\cdot Jk_\mu = \sum_\nu C_{\lambda\mu}^\nu Jk_\nu\) can be given from affine Yangian of \(\mathfrak{gl}(1)\). Then we give the Boson-Fermion correspondence for Jack polynomials \(Jk_\lambda\) and show that 3-Schur functions \(S_\pi\) equal Jack polynomials \(Jk_\lambda\) in the special case of \(h_1 = h\), \(h_2 = -h^{-1}\), \(h_3 = -h + h^{-1}\).

MSC:

81V72 Particle exchange symmetries in quantum theory (general)
18D60 Profunctors (= correspondences, distributors, modules)
12E10 Special polynomials in general fields

References:

[1] Gaberdiel, M. R.; Gopakumar, R.; Li, W.; Peng, C., Higher spins and Yangian symmetries, J. High Energy Phys., 04, Article 152 pp. (2017) · Zbl 1378.81116
[2] Mathieu, P., Extended classical conformal algebras and the second Hamiltonian structure of Lax equations, Phys. Lett. B, 208, 101 (1988)
[3] Morozov, A., Integrability and matrix models, Phys. Usp., 37, 1-55 (1994) · Zbl 1217.81130
[4] Alday, L.; Gaiotto, D.; Tachikawa, Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys., 91, 167-197 (2010) · Zbl 1185.81111
[5] Mironov, A.; Morozov, A., On AGT relation in the case of U(3), Nucl. Phys. B, 825, 1-37 (2010) · Zbl 1196.81205
[6] Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S., Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, J. High Energy Phys., 11, Article 007 pp. (2010) · Zbl 1294.81240
[7] Gaberdiel, M. R.; Hartman, T., Symmetries of holographic minimal models, J. High Energy Phys., 05, Article 031 pp. (2011) · Zbl 1296.81093
[8] Miwa, T.; Jimbo, M.; Date, E., Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0986.37068
[9] Procházka, T., \( \mathcal{W} \)-symmetry, topological vertex and affine Yangian, J. High Energy Phys., 10, Article 077 pp. (2016) · Zbl 1390.81252
[10] Procházka, T., Instanton R-matrix and W-symmtry, J. High Energy Phys., 12, Article 099 pp. (2019) · Zbl 1431.81126
[11] Wang, N., Affine Yangian and 3-Schur functions, Nucl. Phys. B, 960, Article 115173 pp. (2020) · Zbl 1473.81082
[12] Wang, N.; Shi, L., Affine Yangian and Schur functions on plane partitions of 4, J. Math. Phys., 62, Article 061701 pp. (2021) · Zbl 1467.81061
[13] Foda, O.; Wheeler, M., Hall-Littlewood plane partitions and KP, Int. Math. Res. Not., 2597 (2009) · Zbl 1182.05004
[14] Okounkov, A.; Reshetikhin, N.; Vafa, C., Quantum Calabi-Yau and classical crystals
[15] Nakatsu, T.; Takasaki, K., Integrable structure of melting crystal model with external potentials, Adv. Stud. Pure Math., 59, 201-223 (2010) · Zbl 1215.35158
[16] Wang, N.; Wu, K., 3D fermion representation of affine Yangian, Nucl. Phys. B, 974, Article 115642 pp. (2022) · Zbl 1483.81174
[17] Tsymbaliuk, A., The affine Yangian of \(g l_1\) revisited, Adv. Math., 304, 583-645 (2017) · Zbl 1350.81017
[18] Macdonald, I. G., Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs (1979), Clarendon Press: Clarendon Press Oxford · Zbl 0487.20007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.