×

Well-posedness, analyticity and time decay of the 3D fractional magneto-hydrodynamics equations in critical Fourier-Besov-Morrey spaces with variable exponent. (English) Zbl 1500.35221

Summary: In this paper, we establish the global well-posedness and analyticity of the 3D fractional magnetohydrodynamics equations in the critical Fourier-Besov-Morrey spaces with variable exponent, which can be seen as a meaningful complement to the corresponding results of the magnetohydrodynamics equations in usual Fourier-Besov-Morrey spaces. Furthermore, we get time decay rate estimate of mild solutions.

MSC:

35Q30 Navier-Stokes equations
35S30 Fourier integral operators applied to PDEs
42B25 Maximal functions, Littlewood-Paley theory
42B37 Harmonic analysis and PDEs
46F30 Generalized functions for nonlinear analysis (Rosinger, Colombeau, nonstandard, etc.)
49N60 Regularity of solutions in optimal control
76W05 Magnetohydrodynamics and electrohydrodynamics
76D05 Navier-Stokes equations for incompressible viscous fluids
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Abbassi, A.; Allalou, C.; Oulha, Y., Well-posedness and stability for the viscous primitive equations of geophysics in critical Fourier-Besov-Morrey spaces, The International Congress of the Moroccan Society of Applied Mathematics, 123-140 (2019), Cham: Springer, Cham · Zbl 1462.35402
[2] Abidin, MZ; Chen, J., Global well-posedness and analyticity of generalized porous medium quation in Fourier-Besov-Morrey spaces with variable exponent, Mathematics, 9, 498 (2021) · doi:10.3390/math9050498
[3] Abidin, MZ; Chen, J., Global well-posedness for fractional Navier-Stokes equations in variable exponent Fourier-Besov-Morrey spaces, Acta Math. Sci., 41, 164-176 (2021) · Zbl 1513.35419 · doi:10.1007/s10473-021-0109-1
[4] Almeida, A.; Caetano, A., Variable exponent Besov-Morrey spaces, J. Fourier Anal. Appl., 26, 1-420 (2020) · Zbl 1445.46033 · doi:10.1007/s00041-019-09711-y
[5] Almeida, A.; Hasanov, J.; Stefan, J., Maximal and potential operators in variable exponent Morrey spaces, Georg. Math. J., 15, 195-208 (2008) · Zbl 1263.42002 · doi:10.1515/GMJ.2008.195
[6] Azanzal, A.; Abbassi, A.; Allalou, C., Existence of solutions for the Debye-Hückel system with low regularity initial data in critical Fourier-Besov-Morrey spaces, Nonlinear Dyn. Syst. Theory, 21, 367-380 (2021) · Zbl 1524.35295
[7] Azanzal, A.; Allalou, C.; Melliani, S., Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier-Besov-Morrey spaces, J. Elliptic Parabol. Equ. (2021) · Zbl 1491.35330 · doi:10.1007/s41808-021-00140-x
[8] Azanzal, A.; Allalou, C.; Abbassi, A., Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier-Besov-Morrey spaces, J. Nonlinear Funct. Anal., 2021, 24 (2021)
[9] Azanzal, A.; Abbassi, A.; Allalou, C., On the Cauchy problem for the fractional drift-diffusion system in critical Fourier-Besov-Morrey spaces, Int. J. Optim. Appl., 1, 28 (2021)
[10] Bahouri, H., The Littlewood-Paley theory: a common thread of many works in nonlinear analysis, Eur. Math. Soc. Newsl., 11, 15-23 (2019) · Zbl 1435.42012
[11] Cannone, M., A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13, 515-541 (1997) · Zbl 0897.35061 · doi:10.4171/RMI/229
[12] Duvaut, G.; Lions, JL, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46, 241-279 (1972) · Zbl 0264.73027 · doi:10.1007/BF00250512
[13] El Baraka, A.; Toumlilin, M., Global well-posedness for fractional Navier-Stokes equations in critical Fourier-Besov-Morrey spaces, Moroccan J. Pure Appl. Anal., 3, 1-14 (2017) · Zbl 1375.35314 · doi:10.1515/mjpaa-2017-0001
[14] El Baraka, A.; Toumlilin, M., Global well-posedness and decay results for 3D generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces, Electron. J. Differ. Equ., 65, 1-20 (2017) · Zbl 1375.35314
[15] El Baraka, A.; Toumlilin, M., Well-posedness and stability for the generalized incompressible magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces, Acta Math. Sci., 39, 1551-1567 (2019) · Zbl 1499.35497 · doi:10.1007/s10473-019-0607-6
[16] El Baraka, A.; Toumlilin, M., The uniform global well-posedness and the stability of the 3D generalized magnetohydrodynamic equations with the coriolis force, Commun. Optim. Theory, 2019, 12 (2019) · Zbl 1499.35497
[17] Fu, J.; Xu, J., Characterizations of Morrey type Besov and Triebel-Lizorkin spaces with variable exponents, J. Math. Anal. Appl., 381, 280-298 (2011) · Zbl 1221.46032 · doi:10.1016/j.jmaa.2011.02.026
[18] Fujita, H.; Kato, T., On the Navier-Stokes initial value problem, I. Stanford Univ. Calif., 16, 4, 269-315 (1964) · Zbl 0126.42301 · doi:10.1007/bf00276188
[19] He, C.; Huang, X.; Wang, Y., On some new global existence results for 3D magnetohydrodynamic equations, Nonlinearity, 27, 343 (2014) · Zbl 1288.35392 · doi:10.1088/0951-7715/27/2/343
[20] Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet, Math. Nachr., 4, 213-231 (1950) · Zbl 0042.10604 · doi:10.1002/mana.3210040121
[21] Kato, T., Strong \(L^p\)-solutions of the Navier-Stokes equation in \(\mathbb{R}^m\) with applications to weak solutions, Math. Z., 187, 471-480 (1984) · Zbl 0545.35073 · doi:10.1007/BF01174182
[22] Kato, T., Quasi-linear equations of evolution, with applications to partial differential equations, Spectr. Theory Differ. Equ., 448, 25-70 (1995) · Zbl 0315.35077 · doi:10.1007/BFb0067080
[23] Koch, H.; Tataru, D., Well-posedness for the Navier-Stokes equations, Adv. Math., 157, 22-35 (2001) · Zbl 0972.35084 · doi:10.1006/aima.2000.1937
[24] Lemarié-Rieusset, PG, Recent Developments in the Navier-Stokes Problem (2002), London: CRC Press, London · Zbl 1034.35093 · doi:10.1201/9781420035674
[25] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[26] Lin, F.; Xu, L.; Zhang, P., Global small solutions of 2-D incompressible MHD system, J. Differ. Equ., 259, 5440-5485 (2015) · Zbl 1321.35138 · doi:10.1016/j.jde.2015.06.034
[27] Lin, F.; Zhang, P., Global small solutions to an MHD-type system: the three-dimensional case, Commun. Pure Appl. Math., 67, 531-580 (2014) · Zbl 1298.35153 · doi:10.1002/cpa.21506
[28] Liu, Q.; Zhao, J., Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier-Herz spaces, J. Math. Anal. Appl., 420, 1301-1315 (2014) · Zbl 1300.35098 · doi:10.1016/j.jmaa.2014.06.031
[29] Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory (2000), Berlin: Springer Science and Business Media, Berlin · Zbl 0962.76001 · doi:10.1007/BFb0104029
[30] Toumlilin, M., Global well-posedness and analyticity for generalized porous medium equation in critical Fourier-Besov-Morrey spaces, Open J. Math. Anal., 3, 71-80 (2019) · doi:10.30538/psrp-oma2019.0040
[31] Wang, W., Global well-posedness and analyticity for the 3D fractional magneto-hydrodynamics equations in variable Fourier-Besov spaces, Z. Angew. Math. Phys., 70, 1-16 (2019) · Zbl 1429.42028 · doi:10.1007/s00033-019-1210-3
[32] Wang, Y.; Wang, K., Global well-posedness of the three dimensional magneto-hydrodynamics equations, Nonlinear Anal. Real World Appl., 17, 245-251 (2014) · Zbl 1297.35191 · doi:10.1016/j.nonrwa.2013.12.002
[33] Ye, Z., Global well-posedness and decay results to 3D generalized viscous magneto-hydrodynamic equations, Ann. di Mat., 195, 1111-1121 (2016) · Zbl 1379.35257 · doi:10.1007/s10231-015-0507-x
[34] Zhou, X.; Xiao, W., Algebra properties in Fourier-Besov spaces and their applications, J. Funct. Spaces (2018) · Zbl 1415.46026 · doi:10.1155/2018/3629179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.