×

Global well-posedness for fractional Navier-Stokes equations in variable exponent Fourier-Besov-Morrey spaces. (English) Zbl 1513.35419

Summary: In this paper we study the Cauchy problem of the incompressible fractional Navier-Stokes equations in critical variable exponent Fourier-Besov-Morrey space \(\mathcal{F\dot{N}}_{p(\cdot), h(\cdot), q}^{s(\cdot)}(\mathbb{R}^3)\) with \(s(\cdot) = 4 - 2\alpha - \frac{3}{p(\cdot)}\). We prove global well-posedness result with small initial data belonging to \(\mathcal{F\dot{N}}_{p(\cdot), h(\cdot), q}^{4 - 2\alpha - \frac{3}{p(\cdot)}}(\mathbb{R}^3)\) The result of this paper extends some recent work.

MSC:

35Q30 Navier-Stokes equations
35K55 Nonlinear parabolic equations
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] d’Humieres, D.; Lallemand, P.; Frisch, U., Lattice gas models for 3D hydrodynamics, Europhysics Letters, 2, 4, 291 (1986) · doi:10.1209/0295-5075/2/4/006
[2] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Mathematica, 63, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[3] Fujita, H.; Kato, T., On the Navier-Stokes initial value problem. I, Archive for Rational Mechanics and Analysis, 16, 4, 269-315 (1964) · Zbl 0126.42301 · doi:10.1007/BF00276188
[4] Kato, T.; Fujita, H., On the nonstationary Navier-Stokes system, Rendiconti del Seminario Matematico della Universit di Padova, 32, 243-260 (1962) · Zbl 0114.05002
[5] Kato, T., StrongL p-solutions of the Navier-Stokes equation in R^m, with applications to weak solutions, Mathematische Zeitschrift, 187, 4, 471-480 (1984) · Zbl 0545.35073 · doi:10.1007/BF01174182
[6] Cannone M. Paraproduits et Navier-Stokes Diderot Editeur. Arts et Sciences, 1995
[7] Wan, R.; Jia, H., Global well-posedness for the 3D Navier-Sokes equations with a large component of vorticity, Journal of Mathematical Analysis and Applications, 469, 2, 504-524 (2019) · Zbl 1404.35333 · doi:10.1016/j.jmaa.2018.09.023
[8] Giga, Y.; Miyakawa, T., Navier-Stokes flow in R^3 with measures as initial vorticity and Morrey spaces, Communications in Partial Differential Equations, 14, 5, 577-618 (1989) · Zbl 0681.35072 · doi:10.1080/03605308908820621
[9] Kato, T., Strong solutions of the Navier-Stokes equation in Morrey spaces, Boletim da Sociedade Brasileira de Matemtica-Bulletin/Brazilian Mathematical Society, 22, 2, 127-155 (1992) · Zbl 0781.35052 · doi:10.1007/BF01232939
[10] Taylor, M. E., Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Communications in Partial Differential Equations, 17, 9-10, 1407-1456 (1992) · Zbl 0771.35047 · doi:10.1080/03605309208820892
[11] Koch, H.; Tataru, D., Well-posedness for the Navier-Stokes equations, Advances in Mathematics, 157, 1, 22-35 (2001) · Zbl 0972.35084 · doi:10.1006/aima.2000.1937
[12] Bourgain, J.; Pavlovic, N., Ill-posedness of the Navier-Stokes equations in a critical space in 3D, Journal of Functional Analysis, 255, 9, 2233-2247 (2008) · Zbl 1161.35037 · doi:10.1016/j.jfa.2008.07.008
[13] Biswas, A.; Swanson, D., Gevrey regularity of solutions to the 3-D Navier-Stokes equations with weighted p initial data, Indiana University Mathematics Journal, 56, 3, 1157-1188 (2007) · Zbl 1130.35098 · doi:10.1512/iumj.2007.56.2891
[14] Konieczny, P.; Yoneda, T., On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, Journal of Differential Equations, 250, 10, 3859-3873 (2011) · Zbl 1211.35218 · doi:10.1016/j.jde.2011.01.003
[15] Lei, Z.; Lin, F., Global mild solutions of Navier-Stokes equations, Communications on Pure and Applied Mathematics, 64, 9, 1297-1304 (2011) · Zbl 1225.35165 · doi:10.1002/cpa.20361
[16] Lions J L. Quelques mthodes de rsolution des problemes aux limites non linaires. 1969 · Zbl 0189.40603
[17] Wu, J., Generalized MHD equations, Journal of Differential Equations, 195, 2, 284-312 (2003) · Zbl 1057.35040 · doi:10.1016/j.jde.2003.07.007
[18] Wu, J., Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Communications in Mathematical Physics, 263, 3, 803-831 (2006) · Zbl 1104.35037 · doi:10.1007/s00220-005-1483-6
[19] Wang, Y.; Xiao, J., Well/ill-posedness for the dissipative Navier-Stokes system in generalized Carleson measure spaces, Advances in Nonlinear Analysis, 8, 1, 203-224 (2017) · Zbl 1421.35256 · doi:10.1515/anona-2016-0042
[20] Li, P.; Xiao, J.; Yang, Q., Global mild solutions to modified Navier-Stokes equations with small initial data in critical Besov-Q spaces, Electronic Journal of Differential Equations, 2014, 185, 1-37 (2014) · Zbl 1301.35091
[21] Dong, H.; Li, D., Optimal local smoothing and analyticity rate estimates for the generalized Navier-Stokes equations, Communications in Mathematical Sciences, 7, 1, 67-80 (2009) · Zbl 1173.35626 · doi:10.4310/CMS.2009.v7.n1.a3
[22] Xiao, J., Homothetic variant of fractional Sobolev space with application to Navier-Stokes system revisited, Dyn Partial Differ Equ, 11, 2, 167-181 (2014) · Zbl 1302.35303 · doi:10.4310/DPDE.2014.v11.n2.a3
[23] Li, P.; Zhai, Z., Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces, Journal of Functional Analysis, 259, 10, 2457-2519 (2010) · Zbl 1205.35202 · doi:10.1016/j.jfa.2010.07.013
[24] Yu, X.; Zhai, Z., Well-posedness for fractional Navier-Stokes equations in critical spaces close to \(\dot B_{\infty ,\infty }^{ - \left( {2\beta - 1} \right)}\left( {{\mathbb{R}^n}} \right)\), Math Method Appl Sci, 35, 6, 676-683 (2012) · Zbl 1236.35115
[25] Deng, C.; Yao, X., Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in \(\dot F_{\alpha /3 - l}^{ - \alpha ,r}\), Dynamical Systems, 34, 2, 437-459 (2014) · Zbl 1368.76013
[26] Yu, X.; Zhai, Z., Well-posedness for fractional Navier-Stokes equations in the largest critical spaces, Comm Pure Appl Anal, 11, 5, 1809-1823 (2012) · Zbl 1322.35111 · doi:10.3934/cpaa.2012.11.1809
[27] El Baraka, A.; Toumlilin, M., Global well-posedness for fractional Navier-Stokes equations in critical Fourier-Besov-Morrey spaces, Moroccan Journal of Pure and Applied Analysis, 3, 1, 1-13 (2017) · Zbl 1375.35314 · doi:10.1515/mjpaa-2017-0001
[28] Orlicz, W., Ber konjugierte exponentenfolgen, Studia Mathematica, 3, 1, 200-211 (1931) · JFM 57.0251.02 · doi:10.4064/sm-3-1-200-211
[29] Orlicz, W., Ber eine gewisse Klasse von Rumen vom Typus B, Bull Int Acad Pol Ser A, 8, 9, 207-220 (1932) · Zbl 0006.31503
[30] Musielak, J., Modular spaces, Orlicz Spaces and Modular Spaces, 1-32 (1983), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 0557.46020 · doi:10.1007/BFb0072210
[31] Nakano H. Topology and Linear Topological Spaces III. Maruzen Company, 1951
[32] Kovik, O.; Rkosnk, J., On spaces L^p(x) and W^k,p(x), Czechoslovak Mathematical Journal, 41, 4, 592-618 (1991) · Zbl 0784.46029 · doi:10.21136/CMJ.1991.102493
[33] Cruz-Unbe D. The Hardy-Littlewood maximal operator on variable-L^p spaces//Seminar of Mathematical Analysis: Proceedings, Universities of Malaga and Seville (Spain), September 2002-February 2003. 2003, 64(147). Universidad de Sevilla · Zbl 1039.42013
[34] Diening L. Maximal function on generalized Lebesgue spaces L^p(x). Univ Math Fak, 2002 · Zbl 1071.42014
[35] Cruz-Uribe, D.; Diening, L.; Hst, P., The maximal operator on weighted variable Lebesgue spaces, Fractional Calculus and Applied Analysis, 14, 3, 361-374 (2011) · Zbl 1273.42018 · doi:10.2478/s13540-011-0023-7
[36] Cruz-Uribe D V, Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Springer Science Business Media, 2013 · Zbl 1268.46002
[37] Acerbi, E.; Mingione, G., Regularity results for stationary electro-rheological fluids, Archive for Rational Mechanics and Analysis, 164, 3, 213-259 (2002) · Zbl 1038.76058 · doi:10.1007/s00205-002-0208-7
[38] Ruzicka M. Electrorheological Fluids: Modeling and Mathematical Theory. Springer Science and Business Media, 2000 · Zbl 0962.76001
[39] Chen, Y.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, 66, 4, 1383-1406 (2006) · Zbl 1102.49010 · doi:10.1137/050624522
[40] Fan, X., Global C_1, C_α regularity for variable exponent elliptic equations in divergence form, Journal of Differential Equations, 235, 2, 397-417 (2007) · Zbl 1143.35040 · doi:10.1016/j.jde.2007.01.008
[41] Luxenberg W. Banach Function Spaces. Assen, 1955 · Zbl 0068.09204
[42] Almeida A, Caetano A. Variable exponent Besov-Morrey spaces. J Fourier Anal Appl, 2020, 26 (1): Art 5 · Zbl 1445.46033
[43] Ru, S.; Abidin, M. Z., Global well-posedness of the incompressible fractional Navier-Stokes equations in Fourier-Besov spaces with variable exponents, Computers & Mathematics with Applications, 77, 4, 1082-1090 (2019) · Zbl 1442.35354 · doi:10.1016/j.camwa.2018.10.039
[44] El Baraka, A.; Toumlilin, M., Global well-posedness and decay results for 3D generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces, Electronic Journal of Differential Equations, 65, 1-20 (2017) · Zbl 1375.35314
[45] Almeida, A.; Hst, P., Besov spaces with variable smoothness and integrability, Journal of Functional Analysis, 258, 5, 1628-1655 (2010) · Zbl 1194.46045 · doi:10.1016/j.jfa.2009.09.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.