×

On the convergence of Nekrasov functions. (English) Zbl 07826569

Summary: In this note, we present some results on the convergence of Nekrasov partition functions as power series in the instanton counting parameter. We focus on \(U(N) \; \mathcal{N}=2\) gauge theories in four dimensions with matter in the adjoint and in the fundamental representations of the gauge group, respectively, and find rigorous lower bounds for the convergence radius in the two cases: if the theory is conformal, then the series has at least a finite radius of convergence, while if it is asymptotically free it has infinite radius of convergence. Via AGT correspondence, this implies that the related irregular conformal blocks of \(W_N\) algebrae admit a power expansion in the modulus converging in the whole plane. By specifying to the \(SU(2)\) case, we apply our results to analyze the convergence properties of the corresponding Painlevé \(\tau\)-functions.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies

References:

[1] Dyson, FJ, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev., 85, 631-632, 1952 · Zbl 0046.21501 · doi:10.1103/PhysRev.85.631
[2] ’t Hooft, G., Can we make sense out of “quantum chromodynamics”?, Subnucl. Ser., 15, 943, 1979
[3] Nekrasov, NA, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys., 7, 831-864, 2003 · Zbl 1056.81068 · doi:10.4310/ATMP.2003.v7.n5.a4
[4] Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. In: 16th International Congress on Mathematical Physics, pp. 265-289 (2009). doi:10.1142/9789814304634_0015 · Zbl 1214.83049
[5] Alday, LF; Gaiotto, D.; Tachikawa, Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys., 91, 167-197, 2010 · Zbl 1185.81111 · doi:10.1007/s11005-010-0369-5
[6] Gamayun, O.; Iorgov, N.; Lisovyy, O., Conformal field theory of Painlevé VI, JHEP, 10, 038, 2012 · Zbl 1397.81307 · doi:10.1007/JHEP10(2012)038
[7] Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A., On Painlevé/gauge theory correspondence, Lett. Math. Phys., 107, 2359, 2017 · Zbl 1380.34130 · doi:10.1007/s11005-017-0983-6
[8] Grassi, A.; Gu, J.; Mariño, M., Non-perturbative approaches to the quantum Seiberg-Witten curve, JHEP, 07, 106, 2020 · Zbl 1451.81352 · doi:10.1007/JHEP07(2020)106
[9] Fioravanti, D.; Gregori, D., Integrability and cycles of deformed \({\cal{N}}=2\) gauge theory, Phys. Lett. B, 804, 2020 · Zbl 1435.81129 · doi:10.1016/j.physletb.2020.135376
[10] Bonelli, G.; Iossa, C.; Lichtig, DP; Tanzini, A., Irregular Liouville correlators and connection formulae for Heun functions, Commun. Math. Phys., 2022 · Zbl 1522.81459 · doi:10.1007/s00220-022-04497-5
[11] Lisovyy, O., Naidiuk, A.: Perturbative connection formulas for Heun equations (2022). arXiv:2208.01604 [math-ph] · Zbl 1520.34081
[12] Gamayun, O.; Iorgov, N.; Lisovyy, O., How instanton combinatorics solves Painlevé VI, V and IIIs, J. Phys. A, 46, 2013 · Zbl 1282.34096 · doi:10.1088/1751-8113/46/33/335203
[13] Its, A.; Lisovyy, O.; Tykhyy, Y., Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks, Int. Math. Res. Not., 2014 · Zbl 1329.34140 · doi:10.1093/imrn/rnu209
[14] Wyllard, N., \(A_(N-1)\) conformal Toda field theory correlation functions from conformal \(\cal{N} = 2\) SU(N) quiver gauge theories, JHEP, 11, 002, 2009 · doi:10.1088/1126-6708/2009/11/002
[15] Gaiotto, D., Asymptotically free \(\cal{N} = 2\) theories and irregular conformal blocks, J. Phys. Conf. Ser., 462, 2013 · doi:10.1088/1742-6596/462/1/012014
[16] Bonelli, G.; Maruyoshi, K.; Tanzini, A., Wild quiver gauge theories, JHEP, 02, 031, 2012 · Zbl 1309.81144 · doi:10.1007/JHEP02(2012)031
[17] Gaiotto, D.; Teschner, J., Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I, JHEP, 12, 050, 2012 · Zbl 1397.81305 · doi:10.1007/JHEP12(2012)050
[18] Kanno, H.; Maruyoshi, K.; Shiba, S.; Taki, M., \( \cal{W}_3\) irregular states and isolated \(\cal{N} = 2\) superconformal field theories, JHEP, 03, 147, 2013 · Zbl 1342.81501 · doi:10.1007/JHEP03(2013)147
[19] Lisovyy, O.; Nagoya, H.; Roussillon, J., Irregular conformal blocks and connection formulae for Painlevé V functions, J. Math. Phys., 59, 2018 · Zbl 1404.33020 · doi:10.1063/1.5031841
[20] Ghosal, P., Remy, G., Sun, X., Sun, Y.: Analiticity and Symmetry of Virasoro Conformal blocks via Liouville CFT. http://www.math.columbia.edu/ remy/files/Modular_Equation.pdf(in preparation)
[21] Guillarmou, C., Kupiainen, A., Rhodes, R., Vargas, V.: Conformal bootstrap in Liouville theory.arXiv:2005.11530 [math.PR]
[22] Ghosal, P., Remy, G., Sun, X., Sun, Y.: Probabilistic conformal blocks for Liouville CFT on the torus. arXiv:2003.03802 [math.PR]
[23] Bershtein, MA; Shchechkin, AI, q-deformed Painlevé \(\tau\) function and q-deformed conformal blocks, J. Phys. A, 50, 2017 · Zbl 1360.81264 · doi:10.1088/1751-8121/aa5572
[24] Felder, G.; Müller-Lennert, M., Analyticity of Nekrasov partition functions, Commun. Math. Phys., 364, 683-718, 2018 · Zbl 1400.81138 · doi:10.1007/s00220-018-3270-1
[25] Gottsche, L.; Nakajima, H.; Yoshioka, K., Donaldson = Seiberg-Witten from Mochizuki’s formula and instanton counting, Publ. Res. Inst. Math. Sci. Kyoto, 47, 307-359, 2011 · Zbl 1259.14046 · doi:10.2977/prims/37
[26] Fucito, F.; Morales, JF; Poghossian, R.; Tanzini, A., \( \cal{N}=1\) superpotentials from multi-instanton calculus, JHEP, 01, 031, 2006 · doi:10.1088/1126-6708/2006/01/031
[27] Argyres, PC; Douglas, MR, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B, 448, 93, 1995 · Zbl 1009.81572 · doi:10.1016/0550-3213(95)00281-V
[28] Gavrylenko, P.; Lisovyy, O., Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions, Commun. Math. Phys., 363, 1, 2018 · Zbl 1414.34072 · doi:10.1007/s00220-018-3224-7
[29] Zamolodchikov, AB, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys., 96, 419, 1984 · doi:10.1007/BF01214585
[30] Poghossian, R., Recurrence relations for the \({\cal{W}}_3\) conformal blocks and \(\cal{N}=2\) SYM partition functions, JHEP, 11, 053, 2017 · Zbl 1383.81311 · doi:10.1007/JHEP11(2017)053
[31] Sysoeva, E., Bykov, A.: Recurrence relation for instanton partition function in SU(N) gauge theory (2022). arXiv:2209.14949 [hep-th] · Zbl 07690784
[32] Han, G-N, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Annales de l’Institut Fourier Tome, 60, 1, 1-29, 2010 · Zbl 1215.05013 · doi:10.5802/aif.2515
[33] Stanley, RP, Enumerative Combinatorics, 1999, Cambridge: Cambridge University Press, Cambridge · Zbl 0928.05001 · doi:10.1017/CBO9780511609589
[34] Müller, TW; Schlage-Puchta, J-C, Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks, Adv. Math., 213, 919-982, 2007 · Zbl 1173.20009 · doi:10.1016/j.aim.2007.01.016
[35] Tao, T.: The number of cycles in a random permutation (2011). https://terrytao.wordpress.com/2011/11/23/the-number-of-cycles-in-a-random-permutation/
[36] Ford, K.: Cycle type of a random permutations: a toolkit (2021). arXiv:2104.12019
[37] Hardy, GH; Ramanujan, S., Asymptotic formulae in combinatory analysis, Proc. Lond. Math. Soc., 17, 75-115, 1918 · JFM 46.0198.04 · doi:10.1112/plms/s2-17.1.75
[38] Choi, J.; Srivastava, H.; Adamchik, V., Multiple gamma and related functions, Appl. Math. Comput., 134, 2-3, 515, 2003 · Zbl 1026.33003 · doi:10.1016/S0096-3003(01)00301-0
[39] Bonelli, G.; Del Monte, F.; Gavrylenko, P.; Tanzini, A., \({\cal{N}} = 2^*\) gauge theory, free fermions on the Torus and Painlevé VI, Commun. Math. Phys., 377, 1381, 2020 · Zbl 1444.37055 · doi:10.1007/s00220-020-03743-y
[40] Bonelli, G.; Del Monte, F.; Gavrylenko, P.; Tanzini, A., Circular quiver gauge theories, isomonodromic deformations and \(W_N\) fermions on the torus, Lett. Math. Phys., 2019 · Zbl 1509.81561 · doi:10.1007/s11005-020-01343-4
[41] Bruzzo, U.; Fucito, F.; Morales, JF; Tanzini, A., Multiinstanton calculus and equivariant cohomology, JHEP, 05, 054, 2003 · doi:10.1088/1126-6708/2003/05/054
[42] Flume, R.; Poghossian, R., An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A, 18, 2541, 2003 · Zbl 1069.81569 · doi:10.1142/S0217751X03013685
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.