×

Operator-splitting schemes for degenerate, non-local, conservative-dissipative systems. (English) Zbl 07593593

Summary: In this paper, we develop a natural operator-splitting variational scheme for a general class of non-local, degenerate conservative-dissipative evolutionary equations. The splitting-scheme consists of two phases: a conservative (transport) phase and a dissipative (diffusion) phase. The first phase is solved exactly using the method of characteristic and DiPerna-Lions theory while the second phase is solved approximately using a JKO-type variational scheme that minimizes an energy functional with respect to a certain Kantorovich optimal transport cost functional. In addition, we also introduce an entropic-regularisation of the scheme. We prove the convergence of both schemes to a weak solution of the evolutionary equation. We illustrate the generality of our work by providing a number of examples, including the kinetic Fokker-Planck equation and the (regularized) Vlasov-Poisson-Fokker-Planck equation.

MSC:

65-XX Numerical analysis
35K15 Initial value problems for second-order parabolic equations
35K55 Nonlinear parabolic equations
65K05 Numerical mathematical programming methods
90C25 Convex programming

References:

[1] S. Adams; N. Dirr; M. A. Peletier; J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: A new micro-macro passage, Comm. Math. Phys., 307, 791-815 (2011) · Zbl 1267.60106 · doi:10.1007/s00220-011-1328-4
[2] D. Adams, M. H. Duong and G. dos Reis, Entropic regularisation of non-gradient systems, to appear, SIAM Journal on Mathematical Analysis.
[3] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Birkhäuser Verlag, Basel, 2008. · Zbl 1145.35001
[4] A. Arnold, I. M. Gamba, M. P. Gualdani, S. Mischler, C. Mouhot and C. Sparber, The Wigner-Fokker-Planck equation: Stationary states and large time behavior, Math. Models Methods Appl. Sci., 22 (2012), 1250034, 31 pp. · Zbl 1253.82065
[5] Y. Benoist; P. Foulon; F. Labourie, Flots d’Anosov a distributions stable et instable differentiables, J. Amer. Math. Soc., 5, 33-74 (1992) · Zbl 0759.58035 · doi:10.2307/2152750
[6] E. Bernton, Langevin Monte Carlo and JKO splitting, Proceedings of the Conference On Learning Theory, Stockholm, Sweden, 2018, 1777-1798.
[7] T. Bodineau; R. Lefevere, Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats, J. Stat. Phys., 133, 1-27 (2008) · Zbl 1157.82027 · doi:10.1007/s10955-008-9601-4
[8] M. Bowles; M. Agueh, Weak solutions to a fractional Fokker-Planck equation via splitting and Wasserstein gradient flow, Appl. Math. Lett., 42, 30-35 (2015) · Zbl 1319.35288 · doi:10.1016/j.aml.2014.10.008
[9] T. Bühler and D. A. Salamon, Functional Analysis, volume 191, American Mathematical Society, Providence, RI, 2018. · Zbl 1408.46001
[10] E. A. Carlen; W. Gangbo, Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric, Arch. Ration. Mech. Anal., 172, 21-64 (2004) · Zbl 1182.76944 · doi:10.1007/s00205-003-0296-z
[11] E. A. Carlen; J. Maas, Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance, Journal of Functional Analysis, 273, 1810-1869 (2017) · Zbl 1386.46057 · doi:10.1016/j.jfa.2017.05.003
[12] G. Carlier; V. Duval; G. Peyré; B. Schmitzer, Convergence of entropic schemes for optimal transport and gradient flows, SIAM Journal on Mathematical Analysis, 49, 1385-1418 (2017) · Zbl 1365.90197 · doi:10.1137/15M1050264
[13] G. Carlier; M. Laborde, A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts, Nonlinear Analysis: Theory, Methods & Applications, 150, 1-18 (2017) · Zbl 1361.35077 · doi:10.1016/j.na.2016.10.026
[14] J. A. Carrillo; J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in \(L^p\) spaces, Math. Methods Appl. Sci., 18, 825-839 (1995) · Zbl 0829.35096 · doi:10.1002/mma.1670181006
[15] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, Advances in Neural Information Processing Systems, 26, 2292-2300 (2013)
[16] F. Delarue; S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations, Journal of Functional Analysis, 259, 1577-1630 (2010) · Zbl 1223.60037 · doi:10.1016/j.jfa.2010.05.002
[17] S. Di Marino and L. Chizat, A tumor growth model of Hele-Shaw type as a gradient flow, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 103, 38 pp. · Zbl 1460.92050
[18] R. J. DiPerna; P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511-547 (1989) · Zbl 0696.34049 · doi:10.1007/BF01393835
[19] M. H. Duong, Long time behaviour and particle approximation of a generalised Vlasov dynamic, Nonlinear Anal., 127, 1-16 (2015) · Zbl 1330.35456 · doi:10.1016/j.na.2015.06.018
[20] M. H. Duong; Y. Lu, An operator splitting scheme for the fractional kinetic Fokker-Planck equation, Discrete Contin. Dyn. Syst., 39, 5707-5727 (2019) · Zbl 1423.49045 · doi:10.3934/dcds.2019250
[21] M. H. Duong; M. A. Peletier; J. Zimmer, GENERIC formalism of a Vlasov-Fokker-Planck equation and connection to large-deviation principles, Nonlinearity, 26, 2951-2971 (2013) · Zbl 1288.60029 · doi:10.1088/0951-7715/26/11/2951
[22] M. H. Duong; M. A. Peletier; J. Zimmer, Conservative-dissipative approximation schemes for a generalized Kramers equation, Math. Methods Appl. Sci., 37, 2517-2540 (2014) · Zbl 1370.35165 · doi:10.1002/mma.2994
[23] M. H. Duong; H. M. Tran, Analysis of the mean squared derivative cost function, Mathematical Methods in the Applied Sciences, 40, 5222-5240 (2017) · Zbl 1384.49007 · doi:10.1002/mma.4382
[24] M. H. Duong; H. M. Tran, On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type, Discrete Contin. Dyn. Syst., 38, 3407-3438 (2018) · Zbl 1393.35074 · doi:10.3934/dcds.2018146
[25] A. Esposito; F. S. Patacchini; A. Schlichting; D. Slepčev, Nonlocal-interaction equation on graphs: Gradient flow structure and continuum limit, Archive for Rational Mechanics and Analysis, 240, 699-760 (2021) · Zbl 1510.35353 · doi:10.1007/s00205-021-01631-w
[26] R. Glowinski, S. J. Osher and W. Yin, Splitting Methods in Communication, Imaging, Science, and Engineering, Scientific Computation. Springer, Cham, 2016. · Zbl 1362.65002
[27] C. Huang, A variational principle for the Kramers equation with unbounded external forces, J. Math. Anal. Appl., 250, 333-367 (2000) · Zbl 0971.82031 · doi:10.1006/jmaa.2000.7109
[28] C. Huang; R. Jordan, Variational formulations for Vlasov-Poisson-Fokker-Planck systems, Math. Methods Appl. Sci., 23, 803-843 (2000) · Zbl 0962.35003
[29] H. J. Hwang; J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete Contin. Dyn. Syst. Ser. B, 18, 681-691 (2013) · Zbl 1277.35327 · doi:10.3934/dcdsb.2013.18.681
[30] P.-E. Jabin; Z. Wang, Quantitative estimates of propagation of chaos for stochastic systems with \({W}^{-1, \infty}\) kernels, Inventiones Mathematicae, 214, 523-591 (2018) · Zbl 1402.35208 · doi:10.1007/s00222-018-0808-y
[31] R. Jordan; D. Kinderlehrer; F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1-17 (1998) · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[32] H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7, 284-304 (1940) · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[33] R. Kupferman, Fractional kinetics in Kac-Zwanzig heat bath models, J. Statist. Phys., 114, 291-326 (2004) · Zbl 1060.82034 · doi:10.1023/B:JOSS.0000003113.22621.f0
[34] M. Laborde, On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows, Topological Optimization and Optimal Transport, (2017), 17 of Radon Ser. Comput. Appl. Math., 304-332. · Zbl 1379.35159
[35] S. Lisini, Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM Control Optim. Calc. Var., 15, 712-740 (2009) · Zbl 1178.35201 · doi:10.1051/cocv:2008044
[36] C. Liu, C. Wang and Y. Wang, A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance, Journal of Computational Physics, 436 (2021), Paper No. 110253, 22 pp. · Zbl 07513840
[37] J. Maas, Gradient flows of the entropy for finite Markov chains, Journal of Functional Analysis, 261, 2250-2292 (2011) · Zbl 1237.60058 · doi:10.1016/j.jfa.2011.06.009
[38] A. Marcos and A. Soglo, Solutions of a class of degenerate kinetic equations using steepest descent in Wasserstein space, Journal of Mathematics, (2020), Art. ID 7489532, 30 pp. · Zbl 1450.35208
[39] P. A. Markowich, C. A. Ringhofer and C. Schmeiser., Semiconductor Equations, Springer-Verlag, Vienna, 1990. · Zbl 0765.35001
[40] D. Matthes; B. Söllner, Discretization of flux-limited gradient flows: \( \gamma \)-convergence and numerical schemes, Mathematics of Computation, 89, 1027-1057 (2020) · Zbl 1437.35423 · doi:10.1090/mcom/3492
[41] A. Mielke; M. A. Peletier; D. R. M. Renger., On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion, Potential Analysis, 41, 1293-1327 (2014) · Zbl 1304.35692 · doi:10.1007/s11118-014-9418-5
[42] H. C. Öttinger, GENERIC: Review of successful applications and a challenge for the future, preprint, 2018, arXiv: 1810.08470.
[43] M. Ottobre; G. A. Pavliotis, Asymptotic analysis for the generalized Langevin equation, Nonlinearity, 24, 1629-1653 (2011) · Zbl 1221.82076 · doi:10.1088/0951-7715/24/5/013
[44] G. Peyré, Entropic approximation of Wasserstein gradient flows, SIAM Journal on Imaging Sciences, 8, 2323-2351 (2015) · Zbl 1335.90068 · doi:10.1137/15M1010087
[45] G. Peyré; M. Cuturi, Computational optimal transport: With applications to data science, Foundations and Trends in Machine Learning, 11, 355-607 (2019)
[46] L. Rey-Bellet, Open classical systems, Open Quantum Systems, II, Lecture Notes in Math, volume 1881, Springer, Berlin, 2006, 41-78. · Zbl 1188.82038
[47] H. Risken, The Fokker-Planck Equation, Methods of solution and applications, 1989. · Zbl 0665.60084
[48] F. Santambrogio, Optimal transport for applied mathematicians, Birkäuser, NY, 55 (2015), 94. · Zbl 1401.49002
[49] S. Serfaty, Mean field limit for Coulomb-type flows, Duke Math. J., 169 (2020), 2887-2935. With an appendix by Mitia Duerinckx and Serfaty. · Zbl 1475.35341
[50] R. Sinkhorn; P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific Journal of Mathematics, 21, 343-348 (1967) · Zbl 0152.01403 · doi:10.2140/pjm.1967.21.343
[51] J. Smoller, Shock Waves and Reaction-Diffusion Equations, \(2^{nd}\) edition, Springer-Verlag, New York, 1994. · Zbl 0807.35002
[52] C. Villani, Optimal Transport: Old and New, 338. Springer-Verlag, Berlin, 2009. · Zbl 1156.53003
[53] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202, 2009 · Zbl 1197.35004
[54] C. Villani, Topics in Optimal Transportation, volume 58, American Mathematical Soc, 2003. · Zbl 1106.90001
[55] Y. Yao; A. L. Bertozzi, Blow-up dynamics for the aggregation equation with degenerate diffusion, Physica D: Nonlinear Phenomena, 260, 77-89 (2013) · Zbl 1286.35050 · doi:10.1016/j.physd.2013.01.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.