\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Operator-splitting schemes for degenerate, non-local, conservative-dissipative systems

  • *Corresponding author: Manh Hong Duong

    *Corresponding author: Manh Hong Duong 

D. Adams was supported by The Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training funded by the UK Engineering and Physical Sciences Research Council (grant EP/L016508/01), the Scottish Funding Council, Heriot-Watt University and the University of Edinburgh. M. Hong Duong was supported by EPSRC Grants EP/W008041/1 and EP/V038516/1. G. dos Reis acknowledges support from the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UIDB/00297/2020 and UIDP/00297/2020 (Centro de Matemática e Aplicações CMA/FCT/UNL)

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we develop a natural operator-splitting variational scheme for a general class of non-local, degenerate conservative-dissipative evolutionary equations. The splitting-scheme consists of two phases: a conservative (transport) phase and a dissipative (diffusion) phase. The first phase is solved exactly using the method of characteristic and DiPerna-Lions theory while the second phase is solved approximately using a JKO-type variational scheme that minimizes an energy functional with respect to a certain Kantorovich optimal transport cost functional. In addition, we also introduce an entropic-regularisation of the scheme. We prove the convergence of both schemes to a weak solution of the evolutionary equation. We illustrate the generality of our work by providing a number of examples, including the kinetic Fokker-Planck equation and the (regularized) Vlasov-Poisson-Fokker-Planck equation.

    Mathematics Subject Classification: Primary: 35K15, 35K55, Secondary: 65K05, 90C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. AdamsN. DirrM. A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: A new micro-macro passage, Comm. Math. Phys., 307 (2011), 791-815.  doi: 10.1007/s00220-011-1328-4.
    [2] D. Adams, M. H. Duong and G. dos Reis, Entropic regularisation of non-gradient systems, to appear, SIAM Journal on Mathematical Analysis.
    [3] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Birkhäuser Verlag, Basel, 2008.
    [4] A. Arnold, I. M. Gamba, M. P. Gualdani, S. Mischler, C. Mouhot and C. Sparber, The Wigner-Fokker-Planck equation: Stationary states and large time behavior, Math. Models Methods Appl. Sci., 22 (2012), 1250034, 31 pp. doi: 10.1142/S0218202512500340.
    [5] Y. BenoistP. Foulon and F. Labourie, Flots d'Anosov a distributions stable et instable differentiables, J. Amer. Math. Soc., 5 (1992), 33-74.  doi: 10.2307/2152750.
    [6] E. Bernton, Langevin Monte Carlo and JKO splitting, Proceedings of the Conference On Learning Theory, Stockholm, Sweden, 2018, 1777–1798.
    [7] T. Bodineau and R. Lefevere, Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats, J. Stat. Phys., 133 (2008), 1-27.  doi: 10.1007/s10955-008-9601-4.
    [8] M. Bowles and M. Agueh, Weak solutions to a fractional Fokker-Planck equation via splitting and Wasserstein gradient flow, Appl. Math. Lett., 42 (2015), 30-35.  doi: 10.1016/j.aml.2014.10.008.
    [9] T. Bühler and D. A. Salamon, Functional Analysis, volume 191, American Mathematical Society, Providence, RI, 2018. doi: 10.1090/gsm/191.
    [10] E. A. Carlen and W. Gangbo, Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric, Arch. Ration. Mech. Anal., 172 (2004), 21-64.  doi: 10.1007/s00205-003-0296-z.
    [11] E. A. Carlen and J. Maas, Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance, Journal of Functional Analysis, 273 (2017), 1810-1869.  doi: 10.1016/j.jfa.2017.05.003.
    [12] G. CarlierV. DuvalG. Peyré and B. Schmitzer, Convergence of entropic schemes for optimal transport and gradient flows, SIAM Journal on Mathematical Analysis, 49 (2017), 1385-1418.  doi: 10.1137/15M1050264.
    [13] G. Carlier and M. Laborde, A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts, Nonlinear Analysis: Theory, Methods & Applications, 150 (2017), 1-18.  doi: 10.1016/j.na.2016.10.026.
    [14] J. A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839.  doi: 10.1002/mma.1670181006.
    [15] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, Advances in Neural Information Processing Systems, 26 (2013), 2292-2300. 
    [16] F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations, Journal of Functional Analysis, 259 (2010), 1577-1630.  doi: 10.1016/j.jfa.2010.05.002.
    [17] S. Di Marino and L. Chizat, A tumor growth model of Hele-Shaw type as a gradient flow, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 103, 38 pp. doi: 10.1051/cocv/2020019.
    [18] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.
    [19] M. H. Duong, Long time behaviour and particle approximation of a generalised Vlasov dynamic, Nonlinear Anal., 127 (2015), 1-16.  doi: 10.1016/j.na.2015.06.018.
    [20] M. H. Duong and Y. Lu, An operator splitting scheme for the fractional kinetic Fokker-Planck equation, Discrete Contin. Dyn. Syst., 39 (2019), 5707-5727.  doi: 10.3934/dcds.2019250.
    [21] M. H. DuongM. A. Peletier and J. Zimmer, GENERIC formalism of a Vlasov-Fokker-Planck equation and connection to large-deviation principles, Nonlinearity, 26 (2013), 2951-2971.  doi: 10.1088/0951-7715/26/11/2951.
    [22] M. H. DuongM. A. Peletier and J. Zimmer, Conservative-dissipative approximation schemes for a generalized Kramers equation, Math. Methods Appl. Sci., 37 (2014), 2517-2540.  doi: 10.1002/mma.2994.
    [23] M. H. Duong and H. M. Tran, Analysis of the mean squared derivative cost function, Mathematical Methods in the Applied Sciences, 40 (2017), 5222-5240.  doi: 10.1002/mma.4382.
    [24] M. H. Duong and H. M. Tran, On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type, Discrete Contin. Dyn. Syst., 38 (2018), 3407-3438.  doi: 10.3934/dcds.2018146.
    [25] A. EspositoF. S. PatacchiniA. Schlichting and D. Slepčev, Nonlocal-interaction equation on graphs: Gradient flow structure and continuum limit, Archive for Rational Mechanics and Analysis, 240 (2021), 699-760.  doi: 10.1007/s00205-021-01631-w.
    [26] R. Glowinski, S. J. Osher and W. Yin, Splitting Methods in Communication, Imaging, Science, and Engineering, Scientific Computation. Springer, Cham, 2016. doi: 10.1007/978-3-319-41589-5.
    [27] C. Huang, A variational principle for the Kramers equation with unbounded external forces, J. Math. Anal. Appl., 250 (2000), 333-367.  doi: 10.1006/jmaa.2000.7109.
    [28] C. Huang and R. Jordan, Variational formulations for Vlasov-Poisson-Fokker-Planck systems, Math. Methods Appl. Sci., 23 (2000), 803-843. 
    [29] H. J. Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681-691.  doi: 10.3934/dcdsb.2013.18.681.
    [30] P.-E. Jabin and Z. Wang, Quantitative estimates of propagation of chaos for stochastic systems with ${W}^{-1, \infty}$ kernels, Inventiones Mathematicae, 214 (2018), 523-591.  doi: 10.1007/s00222-018-0808-y.
    [31] R. JordanD. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.  doi: 10.1137/S0036141096303359.
    [32] H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7 (1940), 284-304.  doi: 10.1016/S0031-8914(40)90098-2.
    [33] R. Kupferman, Fractional kinetics in Kac-Zwanzig heat bath models, J. Statist. Phys., 114 (2004), 291-326.  doi: 10.1023/B:JOSS.0000003113.22621.f0.
    [34] M. Laborde, On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows, Topological Optimization and Optimal Transport, (2017), 17 of Radon Ser. Comput. Appl. Math., 304–332.
    [35] S. Lisini, Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM Control Optim. Calc. Var., 15 (2009), 712-740.  doi: 10.1051/cocv:2008044.
    [36] C. Liu, C. Wang and Y. Wang, A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance, Journal of Computational Physics, 436 (2021), Paper No. 110253, 22 pp. doi: 10.1016/j.jcp.2021.110253.
    [37] J. Maas, Gradient flows of the entropy for finite Markov chains, Journal of Functional Analysis, 261 (2011), 2250-2292.  doi: 10.1016/j.jfa.2011.06.009.
    [38] A. Marcos and A. Soglo, Solutions of a class of degenerate kinetic equations using steepest descent in Wasserstein space, Journal of Mathematics, (2020), Art. ID 7489532, 30 pp. doi: 10.1155/2020/7489532.
    [39] P. A. Markowich, C. A. Ringhofer and C. Schmeiser., Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.
    [40] D. Matthes and B. Söllner, Discretization of flux-limited gradient flows: $\gamma$-convergence and numerical schemes, Mathematics of Computation, 89 (2020), 1027-1057.  doi: 10.1090/mcom/3492.
    [41] A. MielkeM. A. Peletier and D. R. M. Renger., On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion, Potential Analysis, 41 (2014), 1293-1327.  doi: 10.1007/s11118-014-9418-5.
    [42] H. C. Öttinger, GENERIC: Review of successful applications and a challenge for the future, preprint, 2018, arXiv: 1810.08470.
    [43] M. Ottobre and G. A. Pavliotis, Asymptotic analysis for the generalized Langevin equation, Nonlinearity, 24 (2011), 1629-1653.  doi: 10.1088/0951-7715/24/5/013.
    [44] G. Peyré, Entropic approximation of Wasserstein gradient flows, SIAM Journal on Imaging Sciences, 8 (2015), 2323-2351.  doi: 10.1137/15M1010087.
    [45] G. Peyré and M. Cuturi, Computational optimal transport: With applications to data science, Foundations and Trends in Machine Learning, 11 (2019), 355-607. 
    [46] L. Rey-Bellet, Open classical systems, Open Quantum Systems, II, Lecture Notes in Math, volume 1881, Springer, Berlin, 2006, 41–78. doi: 10.1007/3-540-33966-3_2.
    [47] H. Risken, The Fokker-Planck Equation, Methods of solution and applications, 1989. doi: 10.1007/978-3-642-61544-3.
    [48] F. Santambrogio, Optimal transport for applied mathematicians, Birkäuser, NY, 55 (2015), 94. doi: 10.1007/978-3-319-20828-2.
    [49] S. Serfaty, Mean field limit for Coulomb-type flows, Duke Math. J., 169 (2020), 2887–2935. With an appendix by Mitia Duerinckx and Serfaty. doi: 10.1215/00127094-2020-0019.
    [50] R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific Journal of Mathematics, 21 (1967), 343-348.  doi: 10.2140/pjm.1967.21.343.
    [51] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.
    [52] C. Villani, Optimal Transport: Old and New, 338. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.
    [53] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202, 2009 doi: 10.1090/S0065-9266-09-00567-5.
    [54] C. Villani, Topics in Optimal Transportation, volume 58, American Mathematical Soc, 2003. doi: 10.1090/gsm/058.
    [55] Y. Yao and A. L. Bertozzi, Blow-up dynamics for the aggregation equation with degenerate diffusion, Physica D: Nonlinear Phenomena, 260 (2013), 77-89.  doi: 10.1016/j.physd.2013.01.009.
  • 加载中
SHARE

Article Metrics

HTML views(1939) PDF downloads(143) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return