×

Inclusion and estimates for the jumps of minimizers in variational denoising. (English) Zbl 07931606

Summary: We study stability and inclusion of the jump set of minimizers of convex denoising functionals, such as the celebrated “Rudin-Osher-Fatemi” functional, for scalar or vectorial signals. We show that under mild regularity assumptions on the data fidelity term and the regularizer, the jump set of the minimizer is essentially a subset of the original jump set. Moreover, we give an estimate on the magnitude of the jumps in terms of the data. This extends old results, in particular of the first author (with Caselles and Novaga) and of Valkonen, to much more general cases. We also consider the case where the original datum has unbounded variation, and we define a notion of its jump set which, again, must contain the jump set of the solution.

MSC:

49N45 Inverse problems in optimal control
49N60 Regularity of solutions in optimal control
49K40 Sensitivity, stability, well-posedness
35J70 Degenerate elliptic equations
49J52 Nonsmooth analysis
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

References:

[1] Alberti, G., Rank one property for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), pp. 239-274, doi:10.1017/S030821050002566X. · Zbl 0791.26008
[2] Ambrosio, L. and Dal Maso, G., A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., 108 (1990), pp. 691-702, doi:10.2307/2047789. · Zbl 0685.49027
[3] Ambrosio, L., Fusco, N., and Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, , The Clarendon Press, Oxford University Press, New York, 2000. · Zbl 0957.49001
[4] Andreu-Vaillo, F., Caselles, V., and Mazón, J. M., Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, , Birkhäuser Verlag, Basel, 2004, doi:10.1007/978-3-0348-7928-6. · Zbl 1053.35002
[5] Anzellotti, G. and Giaquinta, M., Funzioni \(BV\) e tracce, Rend. Semin. Mat. Univ. Padova, 60 (1978), pp. 1-21; available online at http://www.numdam.org/item/?id=RSMUP_1978_60_1_0. · Zbl 0432.46031
[6] Bhatia, R., Perturbation Bounds for Matrix Eigenvalues, , SIAM, Philadelphia, PA, 2007, doi:10.1137/1.9780898719079; reprint of the 1987 original. · Zbl 1139.15303
[7] Bredies, K., Kunisch, K., and Pock, T., Total generalized variation, SIAM J. Imaging Sci., 3 (2010), pp. 492-526, doi:10.1137/090769521. · Zbl 1195.49025
[8] Buades, A., Coll, B., and Morel, J.-M., A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), pp. 490-530, doi:10.1137/040616024. · Zbl 1108.94004
[9] Caselles, V., Chambolle, A., and Novaga, M., The discontinuity set of solutions of the TV denoising problem and some extensions, Multiscale Model. Simul., 6 (2007), pp. 879-894, doi:10.1137/070683003. · Zbl 1145.49024
[10] Caselles, V., Chambolle, A., and Novaga, M., Regularity for solutions of the total variation denoising problem, Rev. Mat. Iberoam., 27 (2011), pp. 233-252, doi:10.4171/RMI/634. · Zbl 1228.94005
[11] Caselles, V., Jalalzai, K., and Novaga, M., On the jump set of solutions of the total variation flow, Rend. Semin. Mat. Univ. Padova, 130 (2013), pp. 155-168, doi:10.4171/RSMUP/130-5. · Zbl 1284.49043
[12] Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K., Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 2080-2095, doi:10.1109/TIP.2007.901238.
[13] De Philippis, G. and Rindler, F., On the structure of measures constrained by linear PDEs, in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, Vol. III. Invited Lectures, , World Scientific, Hackensack, NJ, 2018, pp. 2215-2239. · Zbl 1448.35099
[14] Del Nin, G., Rectifiability of the jump set of locally integrable functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22 (2021), pp. 1233-1240. · Zbl 1489.26015
[15] Demengel, F. and Temam, R., Convex functions of a measure and applications, Indiana Univ. Math. J., 33 (1984), pp. 673-709, doi:10.1512/iumj.1984.33.33036. · Zbl 0581.46036
[16] DiBenedetto, E., Real Analysis, 2nd ed., , Birkhäuser/Springer, New York, 2016, doi:10.1007/978-1-4939-4005-9. · Zbl 1353.26001
[17] Duran, J., Moeller, M., Sbert, C., and Cremers, D., Collaborative total variation: A general framework for vectorial TV models, SIAM J. Imaging Sci., 9 (2016), pp. 116-151, doi:10.1137/15M102873X. · Zbl 1381.94016
[18] Elad, M. and Aharon, M., Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), pp. 3736-3745, doi:10.1109/TIP.2006.881969.
[19] Evans, L. C. and Gariepy, R. F., Measure Theory and Fine Properties of Functions, , CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[20] Giusti, E., Minimal Surfaces and Functions of Bounded Variation, , Birkhäuser Verlag, Basel, 1984, doi:10.1007/978-1-4684-9486-0. · Zbl 0545.49018
[21] Goldluecke, B., Strekalovskiy, E., and Cremers, D., The natural vectorial total variation which arises from geometric measure theory, SIAM J. Imaging Sci., 5 (2012), pp. 537-564, doi:10.1137/110823766. · Zbl 1246.68249
[22] Grochulska, Z. and Łasica, M., Local estimates for vectorial Rudin-Osher-Fatemi type problems in one dimension, ESAIM Control Optim. Calc. Var., 30 (2024), 8, doi:10.1051/cocv/2023090.
[23] Jain, V. and Seung, S., Natural image denoising with convolutional networks, in Advances in Neural Information Processing Systems 21, Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., eds., Curran Associates, 2008; available online at https://proceedings.neurips.cc/paper_files/paper/2008/file/c16a5320fa475530d9583c34fd356ef5-Paper.pdf.
[24] Jalalzai, K., Regularization of Inverse Problems in Image Processing, Theses Ecole Polytechnique X, 2012; available online at https://pastel.archives-ouvertes.fr/pastel-00787790.
[25] Jalalzai, K., Discontinuities of the Minimizers of the Weighted or Anisotropic Total Variation for Image Reconstruction, preprint, https://arxiv.org/abs/1402.0026, 2014.
[26] Jalalzai, K. and Chambolle, A., Properties of minimizers of the total variation and of the solutions of the total variation flow, in 2014 IEEE International Conference on Image Processing (ICIP), , 2014, pp. 4832-4836, doi:10.1109/ICIP.2014.7025979.
[27] Kazaniecki, K., Tselishchev, A., and Wojciechowski, M., Schur Property for Jump Parts of Gradient Measures, preprint, https://arxiv.org/abs/2307.08396, 2023.
[28] Łasica, M., Moll, S., and Mucha, P. B., Total variation denoising in \(l^1\) anisotropy, SIAM J. Imaging Sci., 10 (2017), pp. 1691-1723, doi:10.1137/16M1103610. · Zbl 1451.94011
[29] Łasica, M. and Rybka, P., Existence of \(W^{1,1}\) solutions to a class of variational problems with linear growth on convex domains, Indiana Univ. Math. J., 70 (2021), pp. 2427-2450, doi:10.1512/iumj.2021.70.9479. · Zbl 1482.35060
[30] Lebrun, M., Colom, M., Buades, A., and Morel, J.-M., Secrets of image denoising cuisine, Acta Numer., 21 (2012), pp. 475-576, doi:10.1017/S0962492912000062. · Zbl 1260.94016
[31] Leonetti, F. and Siepe, F., Bounds for vector valued minimizers of some integral functionals, Ricerche Mat., 54 (2005), pp. 303-312. · Zbl 1354.49080
[32] Leonetti, F. and Siepe, F., Maximum principle for vector valued minimizers, J. Convex Anal., 12 (2005), pp. 267-278. · Zbl 1098.49033
[33] Mercier, G., Continuity results for TV-minimizers, Indiana Univ. Math. J., 67 (2018), pp. 1499-1545, doi:10.1512/iumj.2018.67.7393. · Zbl 1408.49038
[34] Mirsky, L., A trace inequality of John von Neumann, Monatsh. Math., 79 (1975), pp. 303-306, doi:10.1007/BF01647331. · Zbl 0316.15009
[35] Mumford, D. and Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), pp. 577-685, doi:10.1002/cpa.3160420503. · Zbl 0691.49036
[36] Rellich, F., Perturbation Theory of Eigenvalue Problems, Gordon and Breach Science Publishers, New York, London, Paris, 1969. · Zbl 0181.42002
[37] Rudin, L. I., Osher, S., and Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268, doi:10.1016/0167-2789(92)90242-F. · Zbl 0780.49028
[38] Temam, R., Problèmes mathématiques en plasticité, Méthodes Math. Inform. 12, Gauthier-Villars, Montrouge, 1983. · Zbl 0547.73026
[39] Valkonen, T., The jump set under geometric regularization. Part 1: Basic technique and first-order denoising, SIAM J. Math. Anal., 47 (2015), pp. 2587-2629, doi:10.1137/140976248. · Zbl 1325.49053
[40] Valkonen, T., The jump set under geometric regularisation. Part 2: Higher-order approaches, J. Math. Anal. Appl., 453 (2017), pp. 1044-1085, doi:10.1016/j.jmaa.2017.04.037. · Zbl 1373.49055
[41] Venkatakrishnan, S. V., Bouman, C. A., and Wohlberg, B., Plug-and-Play priors for model based reconstruction, in 2013 IEEE Global Conference on Signal and Information Processing, , 2013, pp. 945-948, doi:10.1109/GlobalSIP.2013.6737048.
[42] von Neumann, J., Collected Works. Vol. IV: Continuous Geometry and Other Topics, Taub, A. H., general ed., Pergamon Press, Oxford, London, New York, Paris, 1962. · Zbl 0188.00103
[43] Wang, M., Zhou, L., Hu, J., Cao, H., Lin, D., Yu, B., and Qu, J., Snapshot temporal compressive light-sheet fluorescence microscopy via deep denoising and total variation priors, Opt. Lett., 48 (2023), pp. 1144-1147, doi:10.1364/OL.475648.
[44] Zoran, D. and Weiss, Y., From learning models of natural image patches to whole image restoration, in 2011 International Conference on Computer Vision, , 2011, pp. 479-486, doi:10.1109/ICCV.2011.6126278.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.