×

An adaptive numerical method for multi-cellular simulations of tissue development and maintenance. (English) Zbl 07931367

Summary: In recent years, multi-cellular models, where cells are represented as individual interacting entities, are becoming ever popular. This has led to a proliferation of novel methods and simulation tools. The first aim of this paper is to review the numerical methods utilised by multi-cellular modelling tools and to demonstrate which numerical methods are appropriate for simulations of tissue and organ development, maintenance, and disease. The second aim is to introduce an adaptive time-stepping algorithm and to demonstrate it’s efficiency and accuracy. We focus on off-lattice, mechanics based, models where cell movement is defined by a series of first order ordinary differential equations, derived by assuming over-damped motion and balancing forces. We see that many numerical methods have been used, ranging from simple forward Euler approaches through to higher order single-step methods like Runge-Kutta 4 and multi-step methods like Adams-Bashforth 2. Through a series of exemplar multi-cellular simulations, we see that if: care is taken to have events (births deaths and re-meshing/re-arrangements) occur on common time-steps; and boundaries are imposed on all sub-steps of numerical methods or implemented using forces, then all numerical methods can converge with the correct order. We introduce an adaptive time-stepping method and demonstrate that the best compromise between \(L_\infty\) error and run-time is to use Runge-Kutta 4 with an increased time-step and moderate adaptivity. We see that a judicious choice of numerical method can speed the simulation up by a factor of 10–60 from the forward Euler methods seen in [J. M. Osborne et al. [PLoS Comput. Biol. 13, No. 2, 1–34 (2017; doi:10.1371/journal.pcbi.1005387)], and a further speed up by a factor of 4 can be achieved by using an adaptive time-step.

MSC:

92C37 Cell biology
92C15 Developmental biology, pattern formation
65L99 Numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Atwell, K.; Qin, Z.; Gavaghan, D.; Kugler, H.; Hubbard, E. J.A.; Osborne, J. M., Mechano-logical model of C. elegans germ line suggests feedback on the cell cycle, Development, 142, 3902-3911, 2015
[2] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing, 1997, Birkhäuser Press), 163-202 · Zbl 0882.65154
[3] Bravo, R. R.; Baratchart, E.; West, J.; Schenck, R. O.; Miller, A. K.; Gallaher, J.; Gatenbee, C. D.; Basanta, D.; Robertson-Tessi, M.; Anderson, A. R.A., Hybrid automata library: A flexible platform for hybrid modeling with real-time visualization, PLoS Comput. Biol., 16, 3, 1-28, 2020
[4] Brodland, G., A new cell-based FE model for the mechanics of embryonic epithelia, Comput. Methods Biomech. Biomed. Eng., 10, 121-128, 2007
[5] Brown, P. J.; Green, J. E.F.; Binder, B. J.; Osborne, J. M., A rigid body framework for multicellular modeling, Nat. Comput. Sci., 1, 11, 754-766, 2021
[6] Butcher, J. C., Numerical Methods for Ordinary Differential Equations, 2016, John Wiley & Sons · Zbl 1354.65004
[7] Collier, N., Repast: An extensible framework for agent simulation, Univ. Chic. Soc. Sci. Res., 36, 2003, 2003
[8] Conradin, R.; Coreixas, C.; Latt, J.; Chopard, B., Palacell2d: A framework for detailed tissue morphogenesis, J. Comput. Sci., 53, Article 101353 pp., 2021
[9] Cook, B.; Combes, A.; Little, M.; Osborne, J. M., Modelling cellular interactions and dynamics during kidney morphogenesis, Bull. Math. Biol., 84, 1, 8, 2021 · Zbl 1478.92025
[10] Cooper, F. R.; Baker, R. E.; Bernabeu, M. O.; Bordas, R.; Bowler, L.; Bueno-Orovio, A.; Byrne, H. M.; Carapella, V.; Cardone-Noott, L.; Cooper, J.; Dutta, S.; Evans, B. D.; Fletcher, A. G.; Grogan, J. A.; Guo, W.; Harvey, D. G.; Hendrix, M.; Kay, D.; Kursawe, J.; Maini, P. K.; McMillan, B.; Mirams, G. R.; Osborne, J. M.; Pathmanathan, P.; Pitt-Francis, J. M.; Robinson, M.; Rodriguez, B.; Spiteri, R. J.; Gavaghan, D. J., Chaste: Cancer, heart and soft tissue environment, J. Open Source Softw., 5, 47, 1848, 2020
[11] Couturier, R.; Cytowski, M.; Szymańska, Z.; Umiński, P.; Andrejczuk, G.; Raszkowski, K., Implementation of an agent-based parallel tissue modelling framework for the intel mic architecture, Sci. Program., 2017, Article 8721612 pp., 2017
[12] Davit, Y.; Osborne, J. M.; Byrne, H. M.; Gavaghan, D. J.; Pitt-Francis, J. M., Validity of the cauchy-born rule applied to discrete cellular-scale models of biological tissues, Phys. Rev. E, 87, Article 042724 pp., 2013
[13] Delile, J.; Herrmann, M.; Peyriéras, N.; Doursat, R., A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation, Nature Commun., 8, 1, 13929, 2017
[14] Drasdo, D.; Hoehme, S.; Hengstler, J. G., How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis, J. Hepatol., 61, 4, 951-956, 2014
[15] Drasdo, D.; Kree, R.; McCaskill, J., Monte carlo approach to tissue-cell populations, Phys. Rev. E, 52, 6, 6635, 1995
[16] Dunn, S.-J.; Näthke, I. S.; Osborne, J. M., Computational models reveal a passive mechanism for cell migration in the crypt, PLoS ONE, 8, 11, Article e80516 pp., 2013
[17] Dunn, S.-J.; Osborne, J. M.; Appleton, P. L.; Näthke, I. S., Combined changes in Wnt signaling response and contact inhibition induce altered proliferation in radiation-treated intestinal crypts, Mollecular Biol. Cell, 27, 11, 1863-1874, 2016
[18] Farhadifar, R.; Röper, J.-C.; Aigouy, B.; Eaton, S.; Jülicher, F., The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing, Curr. Biol., 17, 24, 2095-2104, 2007
[19] Fletcher, A. G.; Osborne, J. M., Seven challenges in the multiscale modeling of multicellular tissues, WIREs Mech. Dis., 14, Article e1527 pp., 2022
[20] Fletcher, A. G.; Osborne, J. M.; Maini, P. K.; Gavaghan, D. J., Implementing vertex dynamics models of cell populations in biology within a consistent computational framework, Prog. Biophys. Mol. Biol., 113, 299-326, 2013
[21] Fletcher, A. G.; Osterfield, M.; Baker, R. E.; Shvartsman, S. Y., Vertex models of epithelial morphogenesis, Biophys. J., 106, 2291-2304, 2014
[22] Germann, P.; Marin-Riera, M.; Sharpe, J., ya \(\parallel\) a: Gpu-powered spheroid models for mesenchyme and epithelium, Cell Syst., 8, 3, 261-266.e3, 2019
[23] Germano, D. P.J.; Zanca, A.; Johnston, S. T.; Flegg, J. A.; Osborne, J. M., Free and interfacial boundaries in individual-based models of multicellular biological systems, Bull. Math. Biol., 85, 11, 111, 2023 · Zbl 1526.92020
[24] Ghaffarizadeh, A.; Heiland, R.; Friedman, S. H.; Mumenthaler, S. M.; Macklin, P., Physicell: An open source physics-based cell simulator for 3-d multicellular systems, PLoS Comput. Biol., 14, 2, 1-31, 2018
[25] Hoehme, S.; Drasdo, D., A cell-based simulation software for multi-cellular systems, Bioinformatics, 26, 20, 2641-2642, 2010
[26] Islam, M. A.; Getz, M.; Macklin, P.; Ford Versypt, A. N., An agent-based modeling approach for lung fibrosis in response to covid-19, PLoS Comput. Biol., 19, 12, 1-27, 2023
[27] Izaguirre, J. A.; Chaturvedi, R.; Huang, C.; Cickovski, T.; Coffland, J.; Thomas, G.; Forgacs, G.; Alber, M.; Hentschel, G.; Newman, S. A.; Glazier, J. A., CompuCell, a multi-model framework for simulation of morphogenesis, Bioinformatics, 20, 1129-1137, 2004
[28] Kang, S.; Kahan, S.; McDermott, J.; Flann, N.; Shmulevich, I., Biocellion : accelerating computer simulation of multicellular biological system models, Bioinformatics, 30, 21, 3101-3108, 2014
[29] Kay, D. A.; Gresho, P. M.; Griffiths, D. F.; Silvester, D. J., Adaptive time-stepping for incompressible flow part ii: Navier-stokes equations, SIAM J. Sci. Comput., 32, 1, 111-128, 2010 · Zbl 1410.76293
[30] Marin-Riera, M.; Brun-Usan, M.; Zimm, R.; Välikangas, T.; Salazar-Ciudad, I., Computational modeling of development by epithelia, mesenchyme and their interactions: a unified model, Bioinformatics, 32, 2, 219-225, 2015
[31] Meineke, F. A.; Potten, C. S.; Loeffler, M., Cell migration and organization in the intestinal crypt using a lattice-free model, Cell Prolif., 34, 4, 253-266, 2001
[32] Miller, C.; Crampin, E.; Osborne, J. M., Maintaining the proliferative cell niche in multicellular models of epithelia, J. Theoret. Biol., 527, Article 110807 pp., 2021 · Zbl 1470.92039
[33] Miller, C.; Crampin, E.; Osborne, J. M., Multiscale modelling of desquamation in the interfollicular epidermis, PLoS Comput. Biol., 18, 8, 1-33, 2022
[34] Murray, P. J.; Edwards, C. M.; Tindall, M. J.; Maini, P., From a discrete to a continuum model of cell dynamics in one dimension, Phys. Rev. E, 80, 2009, 031912-1
[35] Nagai, T.; Honda, H., A dynamic cell model for the formation of epithelial tissues, Phil. Mag. B, 81, 699-719, 2001
[36] Nagai, T.; Honda, H., Wound healing mechanism in epithelial tissues cell adhesion to basal lamina, WSEAS Trans. Biol. Biomed., 3, 6, 389, 2006
[37] Nagai, T.; Honda, H., Computer simulation of wound closure in epithelial tissues: Cell-basal-lamina adhesion, Phys. Rev. E, 80, Article 061903 pp., 2009
[38] Newman, T. J., Modeling multi-cellular systems using sub-cellular elements, Math. Biosci. Eng., 2, 611-622, 2005
[39] Osborne, J. M.; Fletcher, A. G.; Pitt-Francis, J. M.; Maini, P. K.; Gavaghan, D. J., Comparing individual-based approaches to modelling the self-organization of multicellular tissues, PLoS Comput. Biol., 13, 2, 1-34, 2017
[40] Palsson, E.; Othmer, H. G., A model for individual and collective cell movement in dictyostelium discoideum, Proc. Natl. Acad. Sci. USA, 97, 19, 10448-10453, 2000
[41] Pathmanathan, P.; Cooper, J.; Fletcher, A.; Mirams, G.; Murray, P.; Osborne, J. M.; Pitt-Francis, J.; Walter, A.; Chapman, S. J., A computational study of discrete mechanical tissue models, Phys. Biol., 6, Article 036001 pp., 2009
[42] Rejniak, K. A., An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development, J. Theoret. Biol., 247, 186-204, 2007 · Zbl 1455.92033
[43] Runser, S.; Vetter, R.; Iber, D., 3D simulation of tissue mechanics with cell polarization, 2023, bioRxiv
[44] Sandersius, S. A.; Newman, T. J., Modeling cell rheology with the Subcellular Element Model, Phys. Biol., 5, Article 015002 pp., 2008
[45] Sego, T. J.; Aponte-Serrano, J. O.; Ferrari Gianlupi, J.; Heaps, S. R.; Breithaupt, K.; Brusch, L.; Crawshaw, J.; Osborne, J. M.; Quardokus, E. M.; Plemper, R. K.; Glazier, J. A., A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness, PLoS Comput. Biol., 16, 12, 1-51, 2020
[46] Sego, T. J.; Sluka, J. P.; Sauro, H. M.; Glazier, J. A., Tissue forge: Interactive biological and biophysics simulation environment, PLOS Comput. Biol., 19, 10, 1-22, 2023
[47] Smith, W. P.J.; Davit, Y.; Osborne, J. M.; Kim, W.; Foster, K. R.; Pitt-Francis, J. M., Cell morphology drives spatial patterning in microbial communities, Proc. Natl. Acad. Sci., 114, 3, E280-E286, 2017
[48] Starruß, J.; de Back, W.; Brusch, L.; Deutsch, A., Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology, Bioinformatics, 30, 9, 1331-1332, 2014
[49] Sundnes, J., Adaptive Time Step Methods, 61-77, 2024, Springer Nature Switzerland: Springer Nature Switzerland Cham
[50] Sütterlin, T.; Kolb, C.; Dickhaus, H.; Jäger, D.; Grabe, N., Bridging the scales: semantic integration of quantitative SBML in graphical multi-cellular models and simulations with EPISIM and COPASI, Bioinformatics, 29, 2, 223-229, 2012
[51] Swat, M. H.; Thomas, G. L.; Belmonte, J. M.; Shirinifard, A.; Hmeljak, D.; Glazier, J. A., Multi-scale modeling of tissues using compucell3d, Methods Cell Biol., 110, 325, 2012
[52] Tanaka, S.; Sichau, D.; Iber, D., LBIBCell: a cell-based simulation environment for morphogenetic problems, Bioinformatics, 31, 14, 2340-2347, 2015
[53] Tervonen, A.; Korpela, S.; Nymark, S.; Hyttinen, J.; Ihalainen, T. O., The effect of substrate stiffness on elastic force transmission in the epithelial monolayers over short timescales, Cell. Mol. Bioeng., 16, 5, 475-495, 2023
[54] Tisue, S., Wilensky, U., 2004. Netlogo: A simple environment for modeling complexity. In: Proceedings of the Fifth International Conference on Complex Systems ICCS 2004. Vol. 21, Citeseer, pp. 16-21.
[55] van Leeuwen, I.; Mirams, G.; Walter, A.; Fletcher, A.; Murray, P.; Osborne, J.; Varma, S.; Young, S.; Cooper, J.; Doyle, B.; Pitt-Francis, J.; Momtahan, L.; Pathmanathan, P.; Whiteley, J.; Chapman, S.; Gavaghan, D.; Jensen, O.; King, J.; Maini, P.; Waters, S.; Byrne, H., An integrative computational model for intestinal tissue renewal, Cell Prolif., 42, 617-636, 2009
[56] Vetter, R.; Runser, S. V.M.; Iber, D., Polyhoop: Soft particle and tissue dynamics with topological transitions, 2023
[57] Whiteley, J. P., An efficient numerical technique for the solution of the monodomain and bidomain equations, IEEE Trans. Biomed. Eng., 53, 11, 2139-2147, 2006
[58] Whiteley, J. P., Physiology driven adaptivity for the numerical solution of the bidomain equations, Ann. Biomed. Eng., 35, 9, 1510-1520, 2007
[59] Zanca, A.; Flegg, J. A.; Osborne, J. M., Push or pull? cell proliferation and migration during wound healing, Front. Syst. Biol., 2, 2022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.