×

Gravitational-wave background in bouncing models from semi-classical, quantum and string gravity. (English) Zbl 07931285

Summary: We study the primordial spectra and the gravitational-wave background (GWB) of three models of semi-classical, quantum or string gravity where the big bang is replaced by a bounce and the primordial tensor spectrum is blue: ekpyrotic universe with fast-rolling Galileons, string-gas cosmology with Atick-Witten conjecture and pre-big-bang cosmology. We find that the ekpyrotic scenario with Galileons does not produce a GWB amplitude detectable by present or third-generation interferometers, while the Atick-Witten-based string-gas model is ruled out in its present form for violating the big-bang-nucleosynthesis bound, contrary to the original string-gas scenario. In contrast, the GWB of the pre-big-bang scenario falls within the sensitivity window of both LISA and Einstein Telescope, where it takes the form of a single or a broken power law depending on the choice of parameters. The latter will be tightly constrained by both detectors.
{© 2024 The Author(s)}

MSC:

83-XX Relativity and gravitational theory

References:

[1] Abbott, R., GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run, Phys. Rev. X, 13, 2023 · doi:10.1103/PhysRevX.13.041039
[2] Abbott, R., Tests of General Relativity with GWTC-3, 2021
[3] Agazie, Gabriella, The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett., 951, L8, 2023 · doi:10.3847/2041-8213/acdac6
[4] Afzal, Adeela, The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett., 951, L11, 2023 · doi:10.3847/2041-8213/acdc91
[5] Antoniadis, J., The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys., 678, A50, 2023 · doi:10.1051/0004-6361/202346844
[6] Reardon, Daniel J., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett., 951, L6, 2023 · doi:10.3847/2041-8213/acdd02
[7] Xu, Heng, Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys., 23, 2023 · doi:10.1088/1674-4527/acdfa5
[8] Agazie, G., Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background, Astrophys. J., 966, 105, 2024 · doi:10.3847/1538-4357/ad36be
[9] Ben-Dayan, Ido; Kumar, Utkarsh; Thattarampilly, Udaykrishna; Verma, Amresh, Probing the early Universe cosmology with NANOGrav: Possibilities and limitations, Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.103507
[10] Barausse, Enrico, Prospects for Fundamental Physics with LISA, Gen. Rel. Grav., 52, 81, 2020 · doi:10.1007/s10714-020-02691-1
[11] Auclair, Pierre, Cosmology with the Laser Interferometer Space Antenna, Living Rev. Rel., 26, 5, 2023 · doi:10.1007/s41114-023-00045-2
[12] Arun, K. G., New horizons for fundamental physics with LISA, Living Rev. Rel., 25, 4, 2022 · doi:10.1007/s41114-022-00036-9
[13] Colpi, Monica, LISA Definition Study Report, 2024
[14] Maggiore, Michele, Science Case for the Einstein Telescope, JCAP, 03, 2020 · doi:10.1088/1475-7516/2020/03/050
[15] Branchesi, Marica, Science with the Einstein Telescope: a comparison of different designs, JCAP, 07, 2023 · doi:10.1088/1475-7516/2023/07/068
[16] Seto, Naoki; Kawamura, Seiji; Nakamura, Takashi, Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett., 87, 2001 · doi:10.1103/PhysRevLett.87.221103
[17] Kawamura, Seiji; Buchman, Sasha; Sun, Ke-Xun, The Japanese space gravitational wave antenna: DECIGO, Class. Quant. Grav., 28, 2011 · doi:10.1088/0264-9381/28/9/094011
[18] Kawamura, Seiji, Current status of space gravitational wave antenna DECIGO and B-DECIGO, PTEP, 2021, 2021 · doi:10.1093/ptep/ptab019
[19] Mirshekari, Saeed; Yunes, Nicolas; Will, Clifford M., Constraining Generic Lorentz Violation and the Speed of the Graviton with Gravitational Waves, Phys. Rev. D, 85, 2012 · doi:10.1103/PhysRevD.85.024041
[20] Canizares, Priscilla; Gair, Jonathan R.; Sopuerta, Carlos F., Testing Chern-Simons Modified Gravity with Gravitational-Wave Detections of Extreme-Mass-Ratio Binaries, Phys. Rev. D, 86, 2012 · doi:10.1103/PhysRevD.86.044010
[21] Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V., Comments on Graviton Propagation in Light of GW150914, Mod. Phys. Lett. A, 31, 2016 · doi:10.1142/S0217732316750018
[22] Yunes, Nicolas; Yagi, Kent; Pretorius, Frans, Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226, Phys. Rev. D, 94, 2016 · doi:10.1103/PhysRevD.94.084002
[23] Arzano, Michele; Calcagni, Gianluca, What gravity waves are telling about quantum spacetime, Phys. Rev. D, 93, 2016 · doi:10.1103/PhysRevD.93.124065
[24] Calcagni, Gianluca; Kuroyanagi, Sachiko; Marsat, Sylvain; Sakellariadou, Mairi; Tamanini, Nicola; Tasinato, Gianmassimo, Gravitational-wave luminosity distance in quantum gravity, Phys. Lett. B, 798, 2019 · doi:10.1016/j.physletb.2019.135000
[25] Cardoso, Vitor; Pani, Paolo, Testing the nature of dark compact objects: a status report, Living Rev. Rel., 22, 4, 2019 · doi:10.1007/s41114-019-0020-4
[26] Belgacem, Enis, Testing modified gravity at cosmological distances with LISA standard sirens, JCAP, 07, 2019 · Zbl 1515.83295 · doi:10.1088/1475-7516/2019/07/024
[27] Calcagni, Gianluca; Kuroyanagi, Sachiko; Marsat, Sylvain; Sakellariadou, Mairi; Tamanini, Nicola; Tasinato, Gianmassimo, Quantum gravity and gravitational-wave astronomy, JCAP, 10, 2019 · Zbl 1515.83093 · doi:10.1088/1475-7516/2019/10/012
[28] Auclair, Pierre, Probing the gravitational wave background from cosmic strings with LISA, JCAP, 04, 2020 · doi:10.1088/1475-7516/2020/04/034
[29] Belgacem, Enis; Dirian, Yves; Finke, Andreas; Foffa, Stefano; Maggiore, Michele, Gravity in the infrared and effective nonlocal models, JCAP, 04, 2020 · Zbl 1491.83007 · doi:10.1088/1475-7516/2020/04/010
[30] Calcagni, Gianluca; Kuroyanagi, Sachiko, Stochastic gravitational-wave background in quantum gravity, JCAP, 03, 2021 · Zbl 1484.83105 · doi:10.1088/1475-7516/2021/03/019
[31] Addazi, A., Quantum gravity phenomenology at the dawn of the multi-messenger era—A review, Prog. Part. Nucl. Phys., 125, 2022 · doi:10.1016/j.ppnp.2022.103948
[32] Baker, Tessa, Measuring the propagation speed of gravitational waves with LISA, JCAP, 08, 2022 · Zbl 1514.83012 · doi:10.1088/1475-7516/2022/08/031
[33] Calcagni, Gianluca; Modesto, Leonardo, Testing quantum gravity with primordial gravitational waves, 2022
[34] Baker, Tessa; Barausse, Enrico; Chen, Anson; de Rham, Claudia; Pieroni, Mauro; Tasinato, Gianmassimo, Testing gravitational wave propagation with multiband detections, JCAP, 03, 2023 · doi:10.1088/1475-7516/2023/03/044
[35] Calcagni, Gianluca; Kuroyanagi, Sachiko, Log-periodic gravitational-wave background beyond Einstein gravity, Class. Quant. Grav., 41, 2023 · Zbl 1533.83115 · doi:10.1088/1361-6382/ad1123
[36] Christensen, Nelson, Stochastic Gravitational Wave Backgrounds, Rept. Prog. Phys., 82, 2019 · doi:10.1088/1361-6633/aae6b5
[37] Renzini, Arianna I.; Goncharov, Boris; Jenkins, Alexander C.; Meyers, Pat M., Stochastic Gravitational-Wave Backgrounds: Current Detection Efforts and Future Prospects, Galaxies, 10, 34, 2022 · doi:10.3390/galaxies10010034
[38] van Remortel, Nick; Janssens, Kamiel; Turbang, Kevin, Stochastic gravitational wave background: Methods and implications, Prog. Part. Nucl. Phys., 128, 2023 · doi:10.1016/j.ppnp.2022.104003
[39] Koshelev, Alexey S.; Modesto, Leonardo; Rachwal, Leslaw; Starobinsky, Alexei A., Occurrence of exact R^2 inflation in non-local UV-complete gravity, JHEP, 11, 067, 2016 · Zbl 1390.83464 · doi:10.1007/JHEP11(2016)067
[40] Koshelev, Alexey S.; Sravan Kumar, K.; Starobinsky, Alexei A., R^2 inflation to probe non-perturbative quantum gravity, JHEP, 03, 071, 2018 · Zbl 1388.83595 · doi:10.1007/JHEP03(2018)071
[41] Brandenberger, Robert; Ho, Pei-Ming, Noncommutative space-time, stringy space-time uncertainty principle, and density fluctuations, Phys. Rev. D, 66, 2002 · doi:10.1103/PhysRevD.66.023517
[42] Calcagni, Gianluca; Kuroyanagi, Sachiko; Ohashi, Junko; Tsujikawa, Shinji, Strong Planck constraints on braneworld and non-commutative inflation, JCAP, 03, 2014 · doi:10.1088/1475-7516/2014/03/052
[43] Brandenberger, Robert; Wang, Ziwei, Nonsingular Ekpyrotic Cosmology with a Nearly Scale-Invariant Spectrum of Cosmological Perturbations and Gravitational Waves, Phys. Rev. D, 101, 2020 · doi:10.1103/PhysRevD.101.063522
[44] Brandenberger, Robert; Wang, Ziwei, Ekpyrotic cosmology with a zero-shear S-brane, Phys. Rev. D, 102, 2020 · doi:10.1103/PhysRevD.102.023516
[45] Brandenberger, Robert; Dasgupta, Keshav; Wang, Ziwei, Reheating after S-brane ekpyrosis, Phys. Rev. D, 102, 2020 · doi:10.1103/PhysRevD.102.063514
[46] Brandenberger, Robert H.; Nayeri, Ali; Patil, Subodh P.; Vafa, Cumrun, Tensor Modes from a Primordial Hagedorn Phase of String Cosmology, Phys. Rev. Lett., 98, 2007 · doi:10.1103/PhysRevLett.98.231302
[47] Brandenberger, Robert H.; Nayeri, Ali; Patil, Subodh P., Closed String Thermodynamics and a Blue Tensor Spectrum, Phys. Rev. D, 90, 2014 · doi:10.1103/PhysRevD.90.067301
[48] Brandenberger, Robert H., String Gas Cosmology: Progress and Problems, Class. Quant. Grav., 28, 2011 · Zbl 1228.83120 · doi:10.1088/0264-9381/28/20/204005
[49] Brandenberger, Robert H., Unconventional Cosmology, Lect. Notes Phys., 863, 333, 2013 · Zbl 1263.83006 · doi:10.1007/978-3-642-33036-0_12
[50] Bernardo, Heliudson; Brandenberger, Robert; Franzmann, Guilherme, String cosmology backgrounds from classical string geometry, Phys. Rev. D, 103, 2021 · doi:10.1103/PhysRevD.103.043540
[51] Bernardo, Heliudson; Brandenberger, Robert; Franzmann, Guilherme, Solution of the Size and Horizon Problems from Classical String Geometry, JHEP, 10, 155, 2020 · Zbl 1461.83071 · doi:10.1007/JHEP10(2020)155
[52] Calcagni, Gianluca; Kuroyanagi, Sachiko; Tsujikawa, Shinji, Cosmic microwave background and inflation in multi-fractional spacetimes, JCAP, 08, 2016 · doi:10.1088/1475-7516/2016/08/039
[53] Cai, Yi-Fu; Easson, Damien A.; Brandenberger, Robert, Towards a Nonsingular Bouncing Cosmology, JCAP, 08, 2012 · doi:10.1088/1475-7516/2012/08/020
[54] Ben-Dayan, Ido, Gravitational Waves in Bouncing Cosmologies from Gauge Field Production, JCAP, 09, 2016 · doi:10.1088/1475-7516/2016/09/017
[55] Ben-Dayan, Ido; Kupferman, Judy, Sourced scalar fluctuations in bouncing cosmology, JCAP, 07, 2019 · Zbl 1515.83296 · doi:10.1088/1475-7516/2019/07/050
[56] Artymowski, Michał; Ben-Dayan, Ido; Thattarampilly, Udaykrishna, Sourced fluctuations in generic slow contraction, JCAP, 06, 2021 · Zbl 1485.83113 · doi:10.1088/1475-7516/2021/06/010
[57] Ben-Dayan, Ido; Thattarampilly, Udaykrishna, Requiem to “proof of inflation” or sourced fluctuations in a non-singular bounce, JCAP, 06, 2024 · Zbl 07883735 · doi:10.1088/1475-7516/2024/06/004
[58] Khoury, Justin; Ovrut, Burt A.; Steinhardt, Paul J.; Turok, Neil, The Ekpyrotic universe: Colliding branes and the origin of the hot big bang, Phys. Rev. D, 64, 2001 · doi:10.1103/PhysRevD.64.123522
[59] Biswas, Tirthabir; Koivisto, Tomi; Mazumdar, Anupam, Atick-Witten Hagedorn Conjecture, near scale-invariant matter and blue-tilted gravity power spectrum, JHEP, 08, 116, 2014 · doi:10.1007/JHEP08(2014)116
[60] Gasperini, M.; Veneziano, G., Pre - big bang in string cosmology, Astropart. Phys., 1, 317-339, 1993 · doi:10.1016/0927-6505(93)90017-8
[61] Gasperini, M.; Veneziano, G., The Pre - big bang scenario in string cosmology, Phys. Rept., 373, 1-212, 2003 · doi:10.1016/S0370-1573(02)00389-7
[62] Gasperini, M.; Veneziano, G., String Theory and Pre-big bang Cosmology, Nuovo Cim. C, 38, 160, 2016 · doi:10.1393/ncc/i2015-15160-8
[63] Gasperini, M., Observable gravitational waves in pre-big bang cosmology: an update, JCAP, 12, 2016 · doi:10.1088/1475-7516/2016/12/010
[64] Veneziano, G., Scale factor duality for classical and quantum strings, Phys. Lett. B, 265, 287-294, 1991 · doi:10.1016/0370-2693(91)90055-U
[65] Gasperini, M.; Veneziano, G., Non-singular pre-big bang scenarios from all-order ’ corrections, JHEP, 07, 144, 2023 · Zbl 07744289 · doi:10.1007/JHEP07(2023)144
[66] Conzinu, P.; Fanizza, G.; Gasperini, M.; Pavone, E.; Tedesco, L.; Veneziano, G., From the string vacuum to FLRW or de Sitter via ’ corrections, JCAP, 12, 2023 · Zbl 1537.83179 · doi:10.1088/1475-7516/2023/12/019
[67] Gasperini, M.; Giovannini, Massimo, Dilaton contributions to the cosmic gravitational wave background, Phys. Rev. D, 47, 1519-1528, 1993 · doi:10.1103/PhysRevD.47.1519
[68] Brustein, R.; Gasperini, M.; Giovannini, Massimo; Veneziano, G., Relic gravitational waves from string cosmology, Phys. Lett. B, 361, 45-51, 1995 · doi:10.1016/0370-2693(95)01128-D
[69] Brustein, R.; Gasperini, M.; Veneziano, G., Peak and endpoint of the relic graviton background in string cosmology, Phys. Rev. D, 55, 3882-3885, 1997 · doi:10.1103/PhysRevD.55.3882
[70] Gasperini, M., Tensor perturbations in high curvature string backgrounds, Phys. Rev. D, 56, 4815-4823, 1997 · doi:10.1103/PhysRevD.56.4815
[71] ET sensitivity curves used for CoBA science study, https://apps.et-gw.eu/tds/?r=18213.
[72] Papanikolaou, Theodoros; Banerjee, Shreya; Cai, Yi-Fu; Capozziello, Salvatore; Saridakis, Emmanuel N., Primordial black holes and induced gravitational waves in non-singular matter bouncing cosmology, JCAP, 06, 2024 · Zbl 1543.83226 · doi:10.1088/1475-7516/2024/06/066
[73] Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10, 2020 · doi:10.1051/0004-6361/201833887
[74] Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6, 2020 · doi:10.1051/0004-6361/201833910
[75] Workman, R. L., Review of Particle Physics, PTEP, 2022, 2022 · doi:10.1093/ptep/ptac097
[76] Ade, P. A. R., Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season, Phys. Rev. Lett., 127, 2021 · doi:10.1103/PhysRevLett.127.151301
[77] Turner, Michael S.; White, Martin J.; Lidsey, James E., Tensor perturbations in inflationary models as a probe of cosmology, Phys. Rev. D, 48, 4613-4622, 1993 · doi:10.1103/PhysRevD.48.4613
[78] Watanabe, Yuki; Komatsu, Eiichiro, Improved Calculation of the Primordial Gravitational Wave Spectrum in the Standard Model, Phys. Rev. D, 73, 2006 · doi:10.1103/PhysRevD.73.123515
[79] Kuroyanagi, Sachiko; Chiba, Takeshi; Sugiyama, Naoshi, Precision calculations of the gravitational wave background spectrum from inflation, Phys. Rev. D, 79, 2009 · doi:10.1103/PhysRevD.79.103501
[80] Nakayama, Kazunori; Saito, Shun; Suwa, Yudai; Yokoyama, Jun’ichi, Probing reheating temperature of the universe with gravitational wave background, JCAP, 06, 2008 · doi:10.1088/1475-7516/2008/06/020
[81] Figueroa, Daniel G.; Tanin, Erwin H., Ability of LIGO and LISA to probe the equation of state of the early Universe, JCAP, 08, 2019 · Zbl 1541.83152 · doi:10.1088/1475-7516/2019/08/011
[82] Kuroyanagi, Sachiko; Takahashi, Tomo; Yokoyama, Shuichiro, Blue-tilted Tensor Spectrum and Thermal History of the Universe, JCAP, 02, 2015 · doi:10.1088/1475-7516/2015/02/003
[83] Wands, David, Duality invariance of cosmological perturbation spectra, Phys. Rev. D, 60, 1999 · doi:10.1103/PhysRevD.60.023507
[84] Choudhury, Sayantan; Karde, Ahaskar; Panda, Sudhakar; Sami, M., Scalar induced gravity waves from ultra slow-roll Galileon inflation, 2023
[85] Choudhury, Sayantan; Karde, Ahaskar; Panda, Sudhakar; Sami, M., Realisation of the ultra-slow roll phase in Galileon inflation and PBH overproduction, JCAP, 07, 2024 · Zbl 07894648 · doi:10.1088/1475-7516/2024/07/034
[86] Lehners, Jean-Luc; McFadden, Paul; Turok, Neil; Steinhardt, Paul J., Generating ekpyrotic curvature perturbations before the big bang, Phys. Rev. D, 76, 2007 · Zbl 1222.81247 · doi:10.1103/PhysRevD.76.103501
[87] Buchbinder, Evgeny I.; Khoury, Justin; Ovrut, Burt A., New Ekpyrotic cosmology, Phys. Rev. D, 76, 2007 · doi:10.1103/PhysRevD.76.123503
[88] Buchbinder, Evgeny I.; Khoury, Justin; Ovrut, Burt A., On the initial conditions in new ekpyrotic cosmology, JHEP, 11, 076, 2007 · Zbl 1245.83084 · doi:10.1088/1126-6708/2007/11/076
[89] Buchbinder, Evgeny I.; Khoury, Justin; Ovrut, Burt A., Non-Gaussianities in new ekpyrotic cosmology, Phys. Rev. Lett., 100, 2008 · doi:10.1103/PhysRevLett.100.171302
[90] Qiu, Taotao; Gao, Xian; Saridakis, Emmanuel N., Towards anisotropy-free and nonsingular bounce cosmology with scale-invariant perturbations, Phys. Rev. D, 88, 2013 · doi:10.1103/PhysRevD.88.043525
[91] Li, Mingzhe, Note on the production of scale-invariant entropy perturbation in the Ekpyrotic universe, Phys. Lett. B, 724, 192-197, 2013 · Zbl 1331.83084 · doi:10.1016/j.physletb.2013.06.035
[92] Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno, Ekpyrotic Perturbations With Small Non-Gaussian Corrections, Phys. Rev. D, 89, 2014 · doi:10.1103/PhysRevD.89.103537
[93] Ijjas, Anna; Lehners, Jean-Luc; Steinhardt, Paul J., General mechanism for producing scale-invariant perturbations and small non-Gaussianity in ekpyrotic models, Phys. Rev. D, 89, 2014 · doi:10.1103/PhysRevD.89.123520
[94] Ben-Dayan, Ido; Keating, Brian; Leon, David; Wolfson, Ira, Constraints on scalar and tensor spectra from N_eff, JCAP, 06, 2019 · Zbl 1481.83030 · doi:10.1088/1475-7516/2019/06/007
[95] Deo, Nivedita; Jain, Sanjay; Tan, Chung-I, Strings at High-energy Densities and Complex Temperature, Phys. Lett. B, 220, 125-132, 1989 · doi:10.1016/0370-2693(89)90024-5
[96] Deo, Nivedita; Jain, Sanjay; Tan, Chung-I, STRING STATISTICAL MECHANICS ABOVE HAGEDORN ENERGY DENSITY, Phys. Rev. D, 40, 2626, 1989 · doi:10.1103/PhysRevD.40.2626
[97] Brandenberger, Robert H.; Vafa, C., Superstrings in the Early Universe, Nucl. Phys. B, 316, 391-410, 1989 · doi:10.1016/0550-3213(89)90037-0
[98] Tseytlin, Arkady A.; Vafa, C., Elements of string cosmology, Nucl. Phys. B, 372, 443-466, 1992 · doi:10.1016/0550-3213(92)90327-8
[99] Sathiapalan, B., Vortices on the String World Sheet and Constraints on Toral Compactification, Phys. Rev. D, 35, 3277, 1987 · doi:10.1103/PhysRevD.35.3277
[100] Y.I. Kogan, Vortices on the world sheet and string’s critical dynamics, <italic>JETP Lett.</italic> <bold>45</bold> (1987) 709 [<italic>Pis’ma Zh. Eksp. Teor. Fiz.</italic> <bold>45</bold> (1987) 556].
[101] Atick, Joseph J.; Witten, Edward, The Hagedorn Transition and the Number of Degrees of Freedom of String Theory, Nucl. Phys. B, 310, 291-334, 1988 · doi:10.1016/0550-3213(88)90151-4
[102] Banks, T.; Fischler, W., An Holographic cosmology, 2001
[103] Banks, T.; Fischler, W.; Danielsson, U.; Goobar, A.; Nilsson, B. E. W., Holographic cosmology 3.0, Phys. Scripta T, 117, 56-63, 2005 · doi:10.1238/Physica.Topical.117a00056
[104] P.J.E. Peebles, Principles of physical cosmology, Princeton University Press, Princeton, NJ, U.S.A. (1993). · Zbl 1422.83022
[105] Magueijo, Joao; Pogosian, Levon, Could thermal fluctuations seed cosmic structure?, Phys. Rev. D, 67, 2003 · doi:10.1103/PhysRevD.67.043518
[106] Magueijo, Joao; Singh, Parampreet, Thermal fluctuations in loop cosmology, Phys. Rev. D, 76, 2007 · Zbl 1222.83068 · doi:10.1103/PhysRevD.76.023510
[107] Wu, Jian-Pin; Ling, Yi, Thermal non-Gaussianitity in Near-Milne universe, Phys. Lett. B, 684, 177-180, 2010 · doi:10.1016/j.physletb.2010.01.043
[108] Cai, Yi-Fu; Xue, Wei; Brandenberger, Robert; Zhang, Xin-min, Thermal Fluctuations and Bouncing Cosmologies, JCAP, 06, 2009 · doi:10.1088/1475-7516/2009/06/037
[109] Ashoorioon, Amjad; Bhupal Dev, P. S.; Mazumdar, Anupam, Implications of purely classical gravity for inflationary tensor modes, Mod. Phys. Lett. A, 29, 2014 · Zbl 1301.83023 · doi:10.1142/S0217732314501636
[110] Biswas, Tirthabir; Brandenberger, Robert; Koivisto, Tomi; Mazumdar, Anupam, Cosmological perturbations from statistical thermal fluctuations, Phys. Rev. D, 88, 2013 · doi:10.1103/PhysRevD.88.023517
[111] Jaraba, Santiago; García-Bellido, Juan; Kuroyanagi, Sachiko; Ferraiuolo, Sarah; Braglia, Matteo, Stochastic gravitational wave background constraints from Gaia DR3 astrometry, Mon. Not. Roy. Astron. Soc., 524, 3609-3622, 2023 · doi:10.1093/mnras/stad2141
[112] Modesto, Leonardo; Calcagni, Gianluca, Early universe in quantum gravity, JHEP, 08, 194, 2024 · Zbl 07926742 · doi:10.1007/JHEP08(2024)194
[113] Gasperini, M., From pre- to post-big bang: an (almost) self-dual cosmological history, Phil. Trans. Roy. Soc. Lond. A, 380, 2022 · doi:10.1098/rsta.2021.0179
[114] M. Gasperini, Elements of string cosmology. Cambridge University Press, Cambridge, U.K. (2007). · Zbl 1123.83001
[115] Bozza, V.; Gasperini, M.; Giovannini, Massimo; Veneziano, G., Assisting pre - big bang phenomenology through short lived axions, Phys. Lett. B, 543, 14-22, 2002 · doi:10.1016/S0370-2693(02)02387-0
[116] Bozza, V.; Gasperini, M.; Giovannini, Massimo; Veneziano, G., Constraints on pre big bang parameter space from CMBR anisotropies, Phys. Rev. D, 67, 2003 · doi:10.1103/PhysRevD.67.063514
[117] Conzinu, P.; Gasperini, M.; Marozzi, G., Primordial Black Holes from Pre-Big Bang inflation, JCAP, 08, 2020 · Zbl 1492.83060 · doi:10.1088/1475-7516/2020/08/031
[118] Allen, Bruce, The Stochastic Gravity Wave Background in Inflationary Universe Models, Phys. Rev. D, 37, 2078, 1988 · doi:10.1103/PhysRevD.37.2078
[119] Garriga, J.; Verdaguer, E., Particle Creation Due to Cosmological Contraction of Extra Dimensions, Phys. Rev. D, 39, 1072, 1989 · doi:10.1103/PhysRevD.39.1072
[120] Sahni, Varun, The Energy Density of Relic Gravity Waves From Inflation, Phys. Rev. D, 42, 453-463, 1990 · doi:10.1103/PhysRevD.42.453
[121] Mukhanov, Viatcheslav F.; Feldman, H. A.; Brandenberger, Robert H., Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept., 215, 203-333, 1992 · doi:10.1016/0370-1573(92)90044-Z
[122] Gasperini, M.; Maggiore, M.; Veneziano, G., Towards a nonsingular pre - big bang cosmology, Nucl. Phys. B, 494, 315-330, 1997 · Zbl 0939.83054 · doi:10.1016/S0550-3213(97)00149-1
[123] Gasperini, M., Relic gravitons from the pre - big bang: What we know and what we do not know, 1996
[124] Moroi, Takeo; Takahashi, Tomo, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett. B, 522, 215-221, 2001 · Zbl 0977.83120 · doi:10.1016/S0370-2693(01)01295-3
[125] Enqvist, Kari; Sloth, Martin S., Adiabatic CMB perturbations in pre - big bang string cosmology, Nucl. Phys. B, 626, 395-409, 2002 · doi:10.1016/S0550-3213(02)00043-3
[126] Lyth, David H.; Wands, David, Generating the curvature perturbation without an inflaton, Phys. Lett. B, 524, 5-14, 2002 · Zbl 0981.83063 · doi:10.1016/S0370-2693(01)01366-1
[127] Kaspi, V. M.; Taylor, J. H.; Ryba, M. F., High - precision timing of millisecond pulsars. 3: Long - term monitoring of PSRs B1855+09 and B1937+21, Astrophys. J., 428, 713, 1994 · doi:10.1086/174280
[128] Baumann, Daniel; McAllister, Liam, Inflation and String Theory, 2015, Cambridge University Press · Zbl 1339.83003
[129] Calcagni, Gianluca, Classical and Quantum Cosmology, 2017, Springer · Zbl 1359.83001
[130] Kiefer, Claus; Kraemer, Manuel, Quantum Gravitational Contributions to the CMB Anisotropy Spectrum, Phys. Rev. Lett., 108, 2012 · doi:10.1103/PhysRevLett.108.021301
[131] Bini, Donato; Esposito, Giampiero; Kiefer, Claus; Kraemer, Manuel; Pessina, Francesco, On the modification of the cosmic microwave background anisotropy spectrum from canonical quantum gravity, Phys. Rev. D, 87, 2013 · doi:10.1103/PhysRevD.87.104008
[132] Kamenshchik, Alexander Y.; Tronconi, Alessandro; Venturi, Giovanni, Signatures of quantum gravity in a Born-Oppenheimer context, Phys. Lett. B, 734, 72-78, 2014 · Zbl 1380.81468 · doi:10.1016/j.physletb.2014.05.028
[133] Kamenshchik, Alexander Y.; Tronconi, Alessandro; Venturi, Giovanni, Quantum Gravity and the Large Scale Anomaly, JCAP, 04, 2015 · doi:10.1088/1475-7516/2015/04/046
[134] Kamenshchik, Alexander Y.; Tronconi, Alessandro; Venturi, Giovanni, Quantum Cosmology and the Evolution of Inflationary Spectra, Phys. Rev. D, 94, 2016 · doi:10.1103/PhysRevD.94.123524
[135] Brizuela, David; Kiefer, Claus; Krämer, Manuel, Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: The slow-roll approximation, Phys. Rev. D, 94, 2016 · doi:10.1103/PhysRevD.94.123527
[136] Bojowald, Martin; Calcagni, Gianluca; Tsujikawa, Shinji, Observational test of inflation in loop quantum cosmology, JCAP, 11, 2011 · doi:10.1088/1475-7516/2011/11/046
[137] Agullo, Ivan; Morris, Noah A., Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra, Phys. Rev. D, 92, 2015 · doi:10.1103/PhysRevD.92.124040
[138] de Blas, Daniel Martín; Olmedo, Javier, Primordial power spectra for scalar perturbations in loop quantum cosmology, JCAP, 06, 2016 · doi:10.1088/1475-7516/2016/06/029
[139] Castelló Gomar, Laura; Mena Marugán, Guillermo A.; Martín De Blas, Daniel; Olmedo, Javier, Hybrid loop quantum cosmology and predictions for the cosmic microwave background, Phys. Rev. D, 96, 2017 · doi:10.1103/PhysRevD.96.103528
[140] Li, Bao-Fei; Singh, Parampreet; Wang, Anzhong, Primordial power spectrum from the dressed metric approach in loop cosmologies, Phys. Rev. D, 101, 2020 · doi:10.1103/PhysRevD.101.086004
[141] Kuroyanagi, Sachiko; Chiba, Takeshi; Takahashi, Tomo, Probing the Universe through the Stochastic Gravitational Wave Background, JCAP, 11, 2018 · doi:10.1088/1475-7516/2018/11/038
[142] Braglia, Matteo, Gravitational waves from inflation in LISA: reconstruction pipeline and physics interpretation, 2024
[143] Caprini, Chiara; Figueroa, Daniel G.; Flauger, Raphael; Nardini, Germano; Peloso, Marco; Pieroni, Mauro; Ricciardone, Angelo; Tasinato, Gianmassimo, Reconstructing the spectral shape of a stochastic gravitational wave background with LISA, JCAP, 11, 2019 · doi:10.1088/1475-7516/2019/11/017
[144] G. Fanizza, M. Gasperini, E. Pavone, L. Tedesco and G. Veneziano, Viscous effects on the pre-big bang scenario, in preparation.
[145] Kawai, Shinsuke; Sakagami, Masa-aki; Soda, Jiro, Instability of one loop superstring cosmology, Phys. Lett. B, 437, 284-290, 1998 · doi:10.1016/S0370-2693(98)00925-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.