×

An existence and uniqueness of mild solutions of fractional evolution problems. (English) Zbl 07931040

Summary: In this present paper, we concern to investigate the existence and uniqueness of mild solutions for a new class of fractional evolution problems involving sectorial operators and nonlocal conditions by means of fixed point theory. Here we use Caputo fractional derivative of order \(\boldsymbol{\alpha}\) with \(\mathbf{2} < \boldsymbol{\alpha} < \mathbf{3}\). In this sense, in order to elucidate the results obtained, we end the article with examples.

MSC:

34G20 Nonlinear differential equations in abstract spaces
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Burton, TA; Kirk, C., A fixed point theorem of Krasnoselskii-Schaefer type, Math Nachr, 189, 1, 23-31, 1998 · Zbl 0896.47042 · doi:10.1002/mana.19981890103
[2] Chefnaj, N.; Taqbibt, A.; Hilal, K.; Melliani, S.; kajouni, A., Boundary value problems for differential equations involving the generalized Caputo-Fabrizio fractional derivative in \(b\)-metric spaces, Turk J Sci, 8, 1, 24-36, 2023
[3] Cui, Z.; Zhou, Z., Existence of solutions for Caputo fractional delay differential equations with nonlocal and integral boundary conditions, Fixed Point Theory Algorithms Sci Eng, 2023, 1, 1, 2023 · Zbl 1541.34100 · doi:10.1186/s13663-022-00738-3
[4] Derbazi, C.; Hammouche, H., Boundary value problems for Caputo fractional differential equations with nonlocal and fractional integral boundary conditions, Arab J Math, 9, 3, 531-544, 2020 · Zbl 1456.34004 · doi:10.1007/s40065-020-00288-9
[5] Diethelm K, Freed AD (1999) On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. In: Scientific computing in chemical engineering II. Springer, Berlin, pp 217-224. doi:10.1007/978-3-642-60185-9-24
[6] Ding, X-L; Ahmad, B., Analytical solutions to fractional evolution equations with almost sectorial operators, Adv Differ Equ, 2016, 1, 1-25, 2016 · Zbl 1419.35204 · doi:10.1186/s13662-016-0927-y
[7] Glöckle, WG; Nonnenmacher, TF, A fractional calculus approach to self-similar protein dynamics, Biophys J, 68, 1, 46-53, 1995 · doi:10.1016/S0006-3495(95)80157-8
[8] Kexue, L.; Jigen, P., Laplace transform and fractional differential equations, Appl Math Lett, 24, 12, 2019-2023, 2011 · Zbl 1238.34013 · doi:10.1016/j.aml.2011.05.035
[9] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, 2006, Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[10] Lakshmikantham, V.; Leela, S.; Vasundhara Devi, J., Theory of fractional dynamic systems, 2009, Cambridge: Cambridge Scientific Publishers, Cambridge · Zbl 1188.37002
[11] Metzler, R.; Schick, W.; Kilian, HG; Nonnenmacher, TF, Relaxation in filled polymers: a fractional calculus approach, J Chem Phys, 103, 16, 7180-7186, 1995 · doi:10.1063/1.470346
[12] Miller, KS; Ross, B., An introduction to the fractional calculus and differential equations, 1993, New York: Wiley, New York · Zbl 0789.26002
[13] Oldham, K.; Spanier, J., The fractional calculus; theory and applications of differentiation and integration to arbitrary order. Math. Sci. Engine, 11, 1974, New York: Academic Press, New York · Zbl 0292.26011
[14] Periago, F.; Straub, B., A functional calculus for almost sectorial operators and applications to abstract evolution equations, J Evol Equ, 2, 1, 41-68, 2002 · Zbl 1005.47015 · doi:10.1007/s00028-002-8079-9
[15] Sousa, JVC; Santos Oliveira, D.; Capelas de Oliveira, E., A note on the mild solutions of Hilfer impulsive fractional differential equations, Chaos Solit Fract, 147, 2021 · Zbl 1486.34116 · doi:10.1016/j.chaos.2021.110944
[16] Sousa, JVC; Jarad, F.; Abdeljawad, T., Existence of mild solutions to Hilfer fractional evolution equations in Banach space, Ann Funct Anal, 12, 1-16, 2021 · Zbl 1458.34032 · doi:10.1007/s43034-020-00095-5
[17] Sousa, JVC; Kishor, D.; Kucche, D.; Capelas de Oliveira, E., Stability of mild solutions of the fractional nonlinear abstract Cauchy problem, Electr Res Arch, 30, 1, 272-288, 2022 · Zbl 1500.34054 · doi:10.3934/era.2022015
[18] Sousa, JVC; Gala, S.; Capelas De Oliveira, E., On the uniqueness of mild solutions to the time-fractional Navier-Stokes equations in \(L^N(\mathbb{R}^N)^N \), Comput Appl Math, 42, 1, 41, 2023 · Zbl 1538.35263 · doi:10.1007/s40314-023-02185-1
[19] Sousa, JVC; Aurora, M.; Pulido, P.; Govindaraj, V.; Capelas de Oliveira, E., On the \(\varepsilon \)-regular mild solution for fractional abstract integro-differential equations, Soft Comput, 27.21, 15533-15548, 2023 · doi:10.1007/s00500-023-09172-y
[20] Su, X., Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl Math Lett, 22, 1, 64-69, 2009 · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001
[21] Taqbibt, A.; Elomari, M.; Melliani, S., Nonlocal semilinear \(\phi \)-Caputo fractional evolution equation with a measure of noncompactness in Banach space, Filomat, 37, 20, 6877-6890, 2023 · doi:10.2298/FIL2320877T
[22] Wang, RN; Chen, DH; Xiao, TJ, Abstract fractional Cauchy problems with almost sectorial operators, J Differ Equ, 252, 1, 202-235, 2012 · Zbl 1238.34015 · doi:10.1016/j.jde.2011.08.048
[23] Zhou, Y.; He, JW, New results on controllability of fractional evolution systems with order \(\alpha \in (1, 2)\), Evol Equ Control Theory, 10, 3, 491-509, 2021 · Zbl 1481.34081 · doi:10.3934/eect.2020077
[24] Zhou, Y.; Jiao, F., Existence of mild solutions for fractional neutral evolution equations, Comput Math Appl, 59, 3, 1063-1077, 2010 · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.