×

Projectively and affinely invariant PDEs on hypersurfaces. (English) Zbl 07930421

Summary: In Communications in Contemporary Mathematics24 3, (2022),the authors have developed a method for constructing \(G\)-invariant partial differential equations (PDEs) imposed on hypersurfaces of an \((n+1)\)-dimensional homogeneous space \(G/H\), under mild assumptions on the Lie group \(G\). In the present paper, the method is applied to the case when \(G=\mathsf{PGL}(n+1)\) (respectively, \(G=\mathsf{Aff}(n+1)\)) and the homogeneous space \(G/H\) is the \((n+1)\)-dimensional projective \(\mathbb{P}^{n+1} \) (respectively, affine \(\mathbb{A}^{n+1} )\) space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with \(n\) independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces of the space of trace-free cubic forms in \(n\) variables with respect to the group \(\mathsf{CO}(d,n-d)\) of conformal transformations of \(\mathbb{R}^{d,n-d} \).

MSC:

53C30 Differential geometry of homogeneous manifolds
58J70 Invariance and symmetry properties for PDEs on manifolds
35A30 Geometric theory, characteristics, transformations in context of PDEs
58A20 Jets in global analysis

References:

[1] Alekseevsky, D. V., Gutt, J., Manno, G. and Moreno, G., A general method to construct invariant PDEs on homogeneous manifolds, Communications in Contemporary Mathematics24(3) (2022), 2050089. doi: doi:10.1142/s0219199720500893 · Zbl 1485.58001
[2] An-Min, L., Udo, S., Guosong, Z. and Zejun, H., Global Affine Differential Geometry of Hypersurfaces, (Berlin: De Gruyter, 2015). doi: doi:10.1515/9783110268898. · Zbl 1330.53002
[3] Blaschke, W., Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie II: Affine Differentialgeometrie (Grundlehren der mathematischen Wissenschaften) (German Edition), (Berlin - Heidelberg: Springer, 1923), https://www.xarg.org/ref/a/3642471250/. · JFM 49.0499.01
[4] Cheng, S.-Y. and Yau, S.-T., Complete affine hypersurfaces. Part I. The completeness of affine metrics, Communications on Pure and Applied Mathematics39(6) (1986), 839-866, doi: doi:10.1002/cpa.3160390606. · Zbl 0623.53002
[5] Ivey, T. A. and Landsberg, J. M., Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Volume 61 of Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2003). · Zbl 1105.53001
[6] Krasil’Shchik, I. S., Lychagin, V. V. and Vinogradov, A. M., Geometry of Jet Spaces and Nonlinear Partial Differential Equations, (New York- London- Paris - Montreux - Tokyo: Gordon and Breach, 1986). · Zbl 0722.35001
[7] Kushner, A., Lychagin, V. and Rubtsov, V., Contact Geometry and Non-Linear Differential Equations, Volume 101 of Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 2007). · Zbl 1122.53044
[8] Manno, D., Oliveri, F. and Vitolo, R., Differential equations uniquely determined by algebras of point symmetries, Teoret. Mat. Fiz.151(3) (2007), 486-494. doi: doi:10.1007/s11232-007-0069-1 · Zbl 1153.35007
[9] Alekseevsky, D., Manno, G. and Moreno, G., Third-order affine and projective-invariant (systems of) PDEs in two independent variables as vanishing of the Fubini-Pick invariant, (2024), arXiv, https://arxiv.org/abs/2202.09894.
[10] Onishchik, A. L. and Vinberg, E. B., Lie Group and Algebraic Groups, Springer Series in Soviet Mathematics (Springer, Berlin, Germany, 1990). · Zbl 0722.22004
[11] Parshin, A. N. and Shafarevich, I. R., editors, Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences, 1994 ed. (Springer, Berlin, Germany, 1994). · Zbl 0787.00008
[12] Saunders, D. J., The Geometry of Jet Bundles, Volume 142 of London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 1989). doi: doi:10.1017/CBO9780511526411 · Zbl 0665.58002
[13] Springer, T., Invariant Theory (Springer, Berlin, Germany, 1977). · Zbl 0346.20020
[14] Yamaguchi, K., Contact geometry of higher order, Japan. J. Math. (N.S.)8(1) (1982), 109-176. · Zbl 0548.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.