×

Realization of controlled remote implementation of operation. (English) Zbl 07930382

Summary: Controlled remote implementation of operation (CRIO) enables to implement operations on a remote state with strong security. We transmit implementations by entangling qubits in photon-cavity-atom system. The photons transferred in fiber and the atoms embedded in optical cavity construct CZ gates. The gates transfer implementations between participants with the permission of controller. We also construct nonadiabatic holonomic controlled gate between alkali metal atoms. Decoherence and dissipation decrease the fidelity of the implementation operators. We apply anti-blockade effect and dynamical scheme to improve the robustness of the gate.

MSC:

82-XX Statistical mechanics, structure of matter

References:

[1] Liu, Yang; Zhang, Wei-Jun; Jiang, Cong; Chen, Jiu-Peng; Zhang, Chi; Pan, Wen-Xin; Ma, Di; Dong, Hao; Xiong, Jia-Min; Zhang, Cheng-Jun; Li, Hao; Wang, Rui-Chun; Wu, Jun; Chen, Teng-Yun; You, Lixing; Wang, Xiang-Bin; Zhang, Qiang; Pan, Jian-Wei, Experimental twin-field quantum key distribution over 1000 km fiber distance, Phys. Rev. Lett., 130, Article 210801 pp., 2023
[2] Chen, Y.-A.; Zhang, Q.; Chen, T.-Y.; Cai, W.-Q.; Liao, S.-K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.-G.; Chen, Z.; Han, S.-L.; Yu, Q.; Liang, K.; Zhou, F.; Yuan, X.; M.-S. Zhao, Xiang-Bin; Wang, T.-Y.; Jiang, X.; Zhang, L.; Liu, W.-Y.; Li, Y.; Shen, Q.; Cao, Y.; Lu, C.-Y.; Shu, R.; Wang, J.-Y.; Li, L.; Liu, N.-L.; Xu, F.; Wang, X.-B.; Peng, C.-Z.; Pan, J.-W., An integrated space-to-ground quantum communication network over 4 600 kilometres, Nature, 589, 214, 2021
[3] He, Yan-He; Lu, Qiu-Chun; Liao, Yue-Ming; Qin, Xing-Chen; Qin, Jian-Sheng; Zhou, Ping, Bidirectional controlled 23 remote implementation of an arbitrary single qubit unitary operation with epr and cluster states, Internat. J. Theoret. Phys., 54, 5, 1726-1736, 2014 · Zbl 1327.81029
[4] Yu, Li; Nemoto, Kae, Implementation of bipartite or remote unitary gates with repeater nodes, Phys. Rev. A, 94, Article 022320 pp., 2016
[5] Gong, Neng-Fei; Wang, Tie-Jun; Ghose, Shohini, Control power of a high-dimensional controlled nonlocal quantum computation, Phys. Rev. A, 103, Article 052601 pp., 2021
[6] An, Nguyen Ba; Cao, Bich Thi, Controlled remote implementation of operators via hyperentanglement, J. Phys. A, 55, 22, 2022 · Zbl 1506.81026
[7] Qiu, Xinyu; Chen, Lin, Controlled remote implementation of operations via graph states, Ann. Phys. (Berlin), Article 2300320 pp., 2023
[8] Reznik, Benni; Aharonov, Yakir; Groisman, Berry, Remote operations and interactions for systems of arbitrarydimensional hilbert space: State-operator approach, Phys. Rev. A, 65, Article 032312 pp., 2002
[9] Yiru Zhou, Pooja Malik, Florian Fertig, Matthias Bock, Tobias Bauer, Tim van Leent, Wei Zhang, Christoph Becher, Harald Weinfurter, Long-Lived Quantum Memory Enabling Atom-Photon Entanglement over 101 km Telecom Fiber. Arxiv: 2308.08892.
[10] Du, Fang-Fang; Wu, Yi-Ming; Fan, Gang, Refined quantum gates for \(\Lambda \)-type atom-photon hybrid systems, Adv. Quantum Technol., 2023
[11] T. Pellizzari, Quantum Networking with Optical Fibres, Phys. Rev. Lett. 79, 5242.
[12] Zhu-yao Jin, Jun Jing, Geometric quantum gates via dark paths in Rydberg atoms. Arxiv: 2307.07148.
[13] Herterich, Emmi; Sjöqvist, Erik, Single-loop multiple-pulse nonadiabatic holonomic quantum gates, Phys. Rev. A, 94, Article 052310 pp., 2016
[14] Sjöqvist, Erik; Tong, D. M.; Mauritz Andersson, L.; Hessmo, Björn; Johansson, Markus; Singh, Kuldip, Non-adiabatic holonomic quantum computation, New J. Phys., 14, Article 103035 pp., 2012 · Zbl 1448.81256
[15] Sjöqvist, Erik, Nonadiabatic holonomic single-qubit gates in off-resonant \(\Lambda\) systems, Phys. Lett. A, 380, 65, 2016 · Zbl 1377.81039
[16] Faoro, L.; Siewert, J.; Fazio, R., NonAbelian holonomies, charge pumping, and quantum computation with josephson junctions, Phys. Rev. Lett., 90, Article 028301 pp., 2003
[17] Duan, L. M.; Cirac, J. I.; Zoller, P., Geometric manipulation of trapped ions for quantum computation, Science, 292, 1695, 2001
[18] Solinas, P.; Zanardi, P.; Zanghì, N.; Rossi, F., Semiconductor-based geometrical quantum gates, Phys. Rev. B, 67, 2003, 121307(R)
[19] Wu, Xiaoling; Liang, Xinhui; Tian, Yaoqi; Yang, Fan; Chen, Cheng; Liu, Yong-Chun; Tey, Meng Khoon; You, Li, A concise review of Rydberg atom based quantum computation and quantum simulation, Chin. Phys. B, 30, Article 020305 pp., 2021
[20] Shi, Xiao-Feng, Rydberg quantum gates free from blockade error, Phys. Rev. Appl., 7, Article 064017 pp., 2017
[21] Shi, Xiao-Feng, Fast, accurate, and realizable two-qubit entangling gates by quantum interference in detuned rabi cycles of Rydberg atoms, Phys. Rev. Appl., 11, Article 044035 pp., 2019
[22] Kyrylo Simonov, Marcello Caleffi, Jessica Illiano, Angela Sara Cacciapuoti, Universal Quantum Computation via Superposed Orders of Single-Qubit Gates. ArXiv: 2311.13654.
[23] Comparat, Daniel; Pillet, Pierre, Dipole blockade in a cold Rydberg atomic sample, J. Opt. Soc. Am. B, 27, 6, A208-A232, 2010
[24] Wu, Jin-Lei; Wang, Yan; Han, Jin-Xuan; Su, Shi-Lei; Xia, Yan; Jiang, Yongyuan; Song, Jie, Unselective ground-state blockade of Rydberg atoms for implementing quantum gates, Front. Phys., 17, 2, 22501, 2022
[25] An, J. H.; Feng, M.; Oh, C. H., Quantum information processing with a single photon by input-output process regarding low-Q cavities, Phys. Rev. A, 79, Article 032303 pp., 2009
[26] Englert, B. G.; Kurtsiefer, C.; Weinfurter, H., Universal unitary gate for single-photon two-qubit states, Phys. Rev. A, 63, 3, 32303, 2001
[27] Wu, J. L.; Wang, Y.; Han, J. X.; Feng, Y. K.; Su, S. L.; Xia, Y.; Jiang, Y. Y.; Song, J., One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness, Photonics Res., 9, 5, 814, 2021
[28] James, D. F.; Jerke, J., Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys., 85, 6, 625-632, 2007
[29] Zhao, P. Z.; Cui, Xiao-Dan; Xu, G. F.; Sjöqvist, Erik; Tong, D. M., Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A, 96, Article 052316 pp., 2017
[30] Beterov, I. I.; Ryabtsev, I. I.; Tretyakov, D. B., Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n \(\leq 80\), Phys. Rev. A, 79, Article 052504 pp., 2009
[31] Sun, L.-N.; Yan, L.-L.; Su, S.-L; Jia, Y., One-step implementation of time-optimal-control three-qubit nonadiabatic holonomic controlled gates in Rydberg atoms, Phys. Rev. Appl., 16, Article 064040 pp., 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.