×

Improving the global convergence of inexact restoration methods for constrained optimization problems. (English) Zbl 07930280

Summary: Inexact restoration (IR) methods are an important family of numerical methods for solving constrained optimization problems with applications to electronic structures and bilevel programming, among others areas. In these methods, the minimization is divided in two phases: decreasing infeasibility (feasibility phase) and improving optimality (optimality phase). The feasibility phase does not require the generated points to be feasible, so it has a practical appeal. In turn, the optimization phase involves minimizing a simplified model of the problem over a linearization of the feasible set. In this paper, we introduce a new optimization phase through a novel linearization that carries more information about complementarity than that employed in previous IR strategies. We then prove that the resulting algorithmic scheme is able to converge globally to the so-called complementary approximate KKT (CAKKT) points. This global convergence result improves upon all previous results for this class of methods. In particular, convergence to KKT points is established with the very weak CAKKT-regularity condition. Furthermore, to the best of our knowledge, this is the first time that a method for general nonlinear programming has reached CAKKT points without exogenous assumptions. From the practical point of view, the new optimization phase does not require significant additional computational effort compared to the usual one. Our theory also provides new insights, even for the classical IR method, for cases where it is reasonable to compute exact feasible points in the feasibility phase. We present numerical experiments on CUTEst problems to support our findings.

MSC:

90C30 Nonlinear programming
65K05 Numerical mathematical programming methods
90C46 Optimality conditions and duality in mathematical programming
Full Text: DOI

References:

[1] Andreani, R., Castro, S. L. C., Chela, J. L., Friedlander, A., and Santos, S. A., An inexact-restoration method for nonlinear bilevel programming problems, Comput. Optim. Appl., 43 (2009), pp. 307-328, doi:10.1007/s10589-007-9147-4. · Zbl 1170.90484
[2] Andreani, R., Haeser, G., and Martínez, J. M., On sequential optimality conditions for smooth constrained optimization, Optimization, 60 (2011), pp. 627-641, doi:10.1080/02331930903578700. · Zbl 1225.90123
[3] Andreani, R., Haeser, G., Mito, L. M., Ramos, A., and Secchin, L. D., On the best achievable quality of limit points of augmented Lagrangian schemes, Numer. Algorithms, 90 (2022), pp. 851-877, doi:10.1007/s11075-021-01212-8. · Zbl 1495.65075
[4] Andreani, R., Haeser, G., Schuverdt, M. L., and Silva, P. J. S., A relaxed constant positive linear dependence constraint qualification and applications, Math. Program., 135 (2012), pp. 255-273, doi:10.1007/s10107-011-0456-0. · Zbl 1262.90162
[5] Andreani, R., Martínez, J. M., Ramos, A., and Silva, P. J. S., Strict constraint qualifications and sequential optimality conditions for constrained optimization, Math. Oper. Res., 43 (2018), pp. 693-717, doi:10.1287/moor.2017.0879. · Zbl 1516.90091
[6] Andreani, R., Martínez, J. M., and Svaiter, B. F., A new sequential optimality condition for constrained optimization and algorithmic consequences, SIAM J. Optim., 20 (2010), pp. 3533-3554, doi:10.1137/090777189. · Zbl 1217.90148
[7] Andreani, R., Ramirez, V. A., Santos, S. A., and Secchin, L. D., Bilevel optimization with a multiobjective problem in the lower level, Numer. Algorithms, 81 (2019), pp. 915-946, doi:10.1007/s11075-018-0576-1. · Zbl 1415.90112
[8] Andreani, R., Ramos, A., Ribeiro, A. A., Secchin, L. D., and Velazco, A. R., On the convergence of augmented Lagrangian strategies for nonlinear programming, IMA J. Numer. Anal., 42 (2022), pp. 1735-1765, doi:10.1093/imanum/drab021. · Zbl 1498.65088
[9] Arouxét, M. B., Echebest, N. E., and Pilotta, E. A., Inexact restoration method for nonlinear optimization without derivatives, J. Comput. Appl. Math., 290 (2015), pp. 26-43, doi:10.1016/j.cam.2015.04.047. · Zbl 1321.65093
[10] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B., Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65-98, doi:10.1137/141000671. · Zbl 1356.68030
[11] Birgin, E., Bueno, L., and Martínez, J., Assessing the reliability of general-purpose inexact restoration methods, J. Comput. Appl. Math., 282 (2015), pp. 1-16, doi:10.1016/j.cam.2014.12.031. · Zbl 1310.90088
[12] Birgin, E. G., Krejic, N., and Martínez, J. M., Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact, Math. Comp., 89 (2020), pp. 253-278, doi:10.1090/mcom/3445. · Zbl 1461.65130
[13] Birgin, E. G. and Martínez, J. M., Local convergence of an inexact-restoration method and numerical experiments, J. Optim. Theory Appl., 127 (2005), pp. 229-247, doi:10.1007/s10957-005-6537-6. · Zbl 1116.90094
[14] Birgin, E. G. and Martínez, J. M., Practical Augmented Lagrangian Methods for Constrained Optimization, SIAM, Philadelphia, PA, 2014, doi:10.1137/1.9781611973365. · Zbl 1339.90312
[15] Birgin, E. G., Martínez, J. M., and Raydan, M., Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim., 10 (2000), pp. 1196-1211, doi:10.1137/S1052623497330963. · Zbl 1047.90077
[16] Bueno, L. F., Haeser, G., and Martinez, J. M., A flexible inexact restoration methods for constrained optimization, J. Optim. Theory Appl., 165 (2015), pp. 188-208, doi:10.1007/s10957-014-0572-0. · Zbl 1322.90093
[17] Bueno, L. F., Haeser, G., and Martínez, J. M., An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization, Optim. Lett., 10 (2016), pp. 1315-1325, doi:10.1007/s11590-015-0928-x. · Zbl 1353.90143
[18] Bueno, L. F. and Martínez, J. M., On the complexity of an inexact restoration method for constrained optimization, SIAM J. Optim., 30 (2020), pp. 80-101, doi:10.1137/18M1216146. · Zbl 1453.90162
[19] Dolan, E. D. and Moré, J. J., Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), pp. 201-213, doi:10.1007/s101070100263. · Zbl 1049.90004
[20] Fischer, A. and Friedlander, A., A new line search inexact restoration approach for nonlinear programming, Comput. Optim. Appl., 46 (2010), pp. 333-346, doi:10.1007/s10589-009-9267-0. · Zbl 1220.90122
[21] Francisco, J. B., Gonçalves, D. S., Bazán, F. S. V., and Paredes, L. L. T., Non-monotone inexact restoration method for nonlinear programming, Comput. Optim. Appl., 76 (2019), pp. 867-888, doi:10.1007/s10589-019-00129-2. · Zbl 1446.90148
[22] Francisco, J. B., Martínez, J. M., Martinez, L., and Pisnitchenko, F. I., Inexact restoration methods for minimization problems that arise in electronic structure calculations, Comput. Optim. Appl., 50 (2011), pp. 555-590, doi:10.1007/s10589-010-9318-6. · Zbl 1263.90090
[23] Frassoldati, G., Zanni, L., and Zanghirati, G., New adaptive stepsize selections in gradient methods, J. Ind. Manag. Optim., 4 (2008), pp. 299-312, doi:10.3934/jimo.2008.4.299. · Zbl 1161.90524
[24] Gill, P. E., Kungurtsev, V., and Robinson, D. P., A shifted primal-dual penalty-barrier method for nonlinear optimization, SIAM J. Optim., 30 (2020), pp. 1067-1093, doi:10.1137/19M1247425. · Zbl 1436.49018
[25] Gonzaga, C. C., Karas, E., and Vanti, M., A globally convergent filter method for nonlinear programming, SIAM J. Optim., 14 (2004), pp. 646-669, doi:10.1137/S1052623401399320. · Zbl 1079.90129
[26] Izmailov, A. F. and Solodov, M. V., Stabilized SQP revisited, Math. Program., 133 (2012), pp. 93-120, doi:10.1007/s10107-010-0413-3. · Zbl 1245.90145
[27] Karas, E. W., Pilotta, E. A., and Ribeiro, A. A., Numerical comparison of merit function with filter criterion in inexact restoration algorithms using hard-spheres problems, Comput. Optim. Appl., 44 (2009), pp. 427-441, doi:10.1007/s10589-007-9162-5. · Zbl 1181.90245
[28] Kaya, C. Y., Inexact restoration for Runge-Kutta discretization of optimal control problems, SIAM J. Numer. Anal., 48 (2010), pp. 1492-1517, doi:10.1137/090766668. · Zbl 1230.49029
[29] Martínez, J. M., Inexact-restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming, J. Optim. Theory Appl., 111 (2001), pp. 39-58, doi:10.1023/A:1017567113614. · Zbl 1052.90089
[30] Martínez, J. M. and Pilotta, E. A., Inexact-restoration algorithm for constrained optimization, J. Optim. Theory Appl., 104 (2000), pp. 135-163, doi:10.1023/A:1004632923654. · Zbl 0969.90094
[31] Martinez, J. M. and Pilotta, E. A., Inexact restoration methods for nonlinear programming: Advances and perspectives, in Optimization and Control with Applications, Qi, L., Teo, K., and Yang, X., eds., Springer, Boston, MA, 2005, pp. 271-291, doi:10.1007/0-387-24255-4_12. · Zbl 1118.90319
[32] Martínez, J. M. and Svaiter, B. F., A practical optimality condition without constraint qualifications for nonlinear programming, J. Optim. Theory Appl., 118 (2003), pp. 117-133, doi:10.1023/A:1024791525441. · Zbl 1033.90090
[33] Nocedal, J. and Wright, S. J., Numerical Optimization, 2nd ed., Springer, New York, 2006, doi:10.1007/978-0-387-40065-5. · Zbl 1104.65059
[34] Rockafellar, R. T. and Wets, R. J.-B., Variational Analysis, 1st ed., , Springer-Verlag, Berlin, Heidelberg, 1998, doi:10.1007/978-3-642-02431-3. · Zbl 0888.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.