×

Linear quadratic nonzero-sum mean-field stochastic differential games with regime switching. (English) Zbl 07930227

Summary: This paper is concerned with a linear quadratic (LQ) nonzero-sum stochastic differential game for regime switching diffusions with mean-field interactions. The salient features of this paper include that the concept of strategies is first adopted in the LQ nonzero-sum game and conditional mean-field terms appear in the state equation and cost functionals. First, a candidate optimal feedback control-strategy pair for the two players is formally constructed based on solutions of four coupled Riccati equations. Then, we verify that the formal optimal pair is indeed a Nash equilibrium for the game by a delicate multi-step completion of squares. The four Riccati equations introduced in this paper are new in the literature. Uniqueness of solutions to the Riccati equations for the general case and existence of solutions for a special case are obtained. Finally, a numerical example is reported to demonstrate the theoretical results.

MSC:

91A15 Stochastic games, stochastic differential games
49N10 Linear-quadratic optimal control problems
49N80 Mean field games and control
Full Text: DOI

References:

[1] Bensoussan, A., Chen, S., Sethi, S.P.: Feedback Stackelberg solutions of infinite-horizon stochastic differential games. In: Models and Methods in Economics and Management Science, 3-15, Internat. Ser. Oper. Res. Management Sci., vol. 198, Springer, Cham (2014) · Zbl 1296.91063
[2] Bensoussan, A.; Chen, S.; Sethi, SP, The maximum principle for global solutions of stochastic Stackelberg differential games, SIAM J. Control. Optim., 53, 1956-1981, 2015 · Zbl 1320.91042 · doi:10.1137/140958906
[3] Buckdahn, R.; Li, J., Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM J. Control. Optim., 47, 444-475, 2008 · Zbl 1157.93040 · doi:10.1137/060671954
[4] Buckdahn, R.; Djehiche, B.; Li, J.; Peng, S., Mean-field backward stochastic differential equations: a limit approach, Ann. Probab., 37, 1524-1565, 2009 · Zbl 1176.60042 · doi:10.1214/08-AOP442
[5] Buckdahn, R.; Li, J.; Peng, S., Mean-field backward stochastic differential equations and related partial differential equations, Stoch. Process. Appl., 119, 3133-3154, 2009 · Zbl 1183.60022 · doi:10.1016/j.spa.2009.05.002
[6] Carmona, R., Delarue, F.: Mean field forward-backward stochastic differential equations. Electron. Commun. Probab. 18, Paper No. 68 (2013) · Zbl 1297.93182
[7] Carmona, R.; Delarue, F., Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics, Ann. Probab., 43, 2647-2700, 2015 · Zbl 1322.93103 · doi:10.1214/14-AOP946
[8] Catherine, D., Sufficient stochastic maximum principle in a regime-switching diffusion model, Appl. Math. Optim., 64, 155-169, 2011 · Zbl 1245.49037 · doi:10.1007/s00245-010-9130-9
[9] Cosso, A., Stochastic differential games involving impulse controls and double-obstacle quasi-variational inequalities, SIAM J. Control. Optim., 51, 2102-2131, 2013 · Zbl 1271.93172 · doi:10.1137/120880094
[10] Elliott, R.J., Kalton, N.J.: The existence of value in differential games. Mem. Amer. Math. Soc., No. 126, Amer. Math. Soc., Providence (1972) · Zbl 0262.90076
[11] Evans, LC; Souganidis, PE, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J., 33, 773-797, 1984 · Zbl 1169.91317 · doi:10.1512/iumj.1984.33.33040
[12] Fleming, WH; Souganidis, PE, On the existence of value functions of two-player, zero-sum stochastic differential games, Indiana Univ. Math. J., 38, 293-314, 1989 · Zbl 0686.90049 · doi:10.1512/iumj.1989.38.38015
[13] Hamadène, S., Backward-forward SDE’s and stochastic differential games, Stoch. Process. Appl., 77, 1-15, 1998 · Zbl 0932.60065 · doi:10.1016/S0304-4149(98)00038-6
[14] Hamadène, S., Nonzero sum linear-quadratic stochastic differential games and backward-forward equations, Stoch. Anal. Appl., 17, 117-130, 1999 · Zbl 0922.60050 · doi:10.1080/07362999908809591
[15] Hamadène, S., Lepeltier, J.P., Peng, S.: BSDEs with continuous coefficients and stochastic differential games. In: Backward Stochastic Differential Equations (Paris, 1995-1996), 115-128, Pitman Res. Notes Math. Ser., vol. 364, Longman, Harlow (1997) · Zbl 0892.60062
[16] Hu, Y.; Zhou, XY, Indefinite stochastic Riccati equations, SIAM J. Control. Optim., 42, 123-137, 2003 · Zbl 1039.60058 · doi:10.1137/S0363012901391330
[17] Isaacs, R., Differential Games, 1965, New York: Wiley, New York · Zbl 0125.38001
[18] Jian, J.; Lai, P.; Song, Q.; Ye, J., The convergence rate of the equilibrium measure for the hybrid LQG Mean Field Game, Nonlinear Anal. Hybrid Syst., 52, 2024 · Zbl 1541.91023 · doi:10.1016/j.nahs.2023.101454
[19] Karatzas, I.; Shreve, SE, Broanian Motion and Stochastic Calculus, 1991, New York: Springer, New York · Zbl 0734.60060
[20] Li, J., Stochastic maximum principle in the mean-field controls, Automatica, 48, 366-373, 2012 · Zbl 1260.93176 · doi:10.1016/j.automatica.2011.11.006
[21] Li, N.; Li, X.; Yu, Z., Indefinite mean-field type linear-quadratic stochastic optimal control problems, Automatica, 122, 2020 · Zbl 1451.93418 · doi:10.1016/j.automatica.2020.109267
[22] Li, X.; Sun, J.; Xiong, J., Linear quadratic optimal control problems for mean-field backward stochastic differential equations, Appl. Math. Optim., 80, 223-250, 2019 · Zbl 1428.49037 · doi:10.1007/s00245-017-9464-7
[23] Li, Y.; Zheng, H., Weak necessary and sufficient stochastic maximum principle for Markovian regime-switching diffusion models, Appl. Math. Optim., 71, 39-77, 2015 · Zbl 1309.93187 · doi:10.1007/s00245-014-9252-6
[24] Lv, S.; Wu, Z.; Zhang, Q., Optimal switching under a hybrid diffusion model and applications to stock trading, Automatica, 94, 361-372, 2018 · Zbl 1401.93227 · doi:10.1016/j.automatica.2018.04.048
[25] Lv, S.; Wu, Z.; Zhang, Q., The Dynkin game with regime switching and applications to pricing game options, Ann. Oper. Res., 313, 1159-1182, 2022 · Zbl 1494.91031 · doi:10.1007/s10479-020-03656-y
[26] Lv, S.; Xiong, J.; Zhang, X., Linear quadratic leader-follower stochastic differential games for mean-field switching diffusions, Automatica, 154, 2023 · Zbl 1520.91087 · doi:10.1016/j.automatica.2023.111072
[27] Moon, J., A sufficient condition for linear-quadratic stochastic zero-sum differential games for Markov jump systems, IEEE Trans. Autom. Control, 64, 1619-1626, 2019 · Zbl 1482.91018 · doi:10.1109/TAC.2018.2849945
[28] Nguyen, SL; Nguyen, DT; Yin, G., A stochastic maximum principle for switching diffusions using conditional mean-fields with applications to control problems, ESAIM Control Optim. Calc. Var., 26, 69, 2020 · Zbl 1460.60082 · doi:10.1051/cocv/2019055
[29] Nguyen, SL; Yin, G.; Hoang, TA, Laws of large numbers for systems with mean-field interactions and Markovian switching, Stoch. Process. Appl., 130, 262-296, 2020 · Zbl 1471.60115 · doi:10.1016/j.spa.2019.02.014
[30] Nguyen, SL; Yin, G.; Nguyen, DT, A general stochastic maximum principle for mean-field controls with regime switching, Appl. Math. Optim., 84, 3255-3294, 2021 · Zbl 1475.60140 · doi:10.1007/s00245-021-09747-x
[31] Peng, S., Stochastic Hamilton-Jacobi-Bellman equations, SIAM J. Control. Optim., 30, 284-304, 1992 · Zbl 0747.93081 · doi:10.1137/0330018
[32] Shi, J.; Wang, G.; Xiong, J., Leader-follower stochastic differential game with asymmetric information and applications, Automatica, 63, 60-73, 2016 · Zbl 1329.93157 · doi:10.1016/j.automatica.2015.10.011
[33] Song, Q.; Stockbridge, RH; Zhu, C., On optimal harvesting problems in random environments, SIAM J. Control Optim., 49, 859-889, 2011 · Zbl 1217.93185 · doi:10.1137/100797333
[34] Starr, AW; Ho, YC, Nonzero-sum differential games, J. Optim. Theory Appl., 3, 184-206, 1969 · Zbl 0169.12301 · doi:10.1007/BF00929443
[35] Sun, J.; Yong, J., Linear-quadratic stochastic two-person nonzero-sum differential games: open-loop and closed-loop Nash equilibria, Stoch. Process. Appl., 129, 381-418, 2019 · Zbl 1405.91025 · doi:10.1016/j.spa.2018.03.002
[36] Tian, R.; Yu, Z.; Zhang, R., A closed-loop saddle point for zero-sum linear-quadratic stochastic differential games with mean-field type, Syst. Control Lett., 136, 2020 · Zbl 1433.91013 · doi:10.1016/j.sysconle.2020.104624
[37] Wang, G.; Wu, Z., A maximum principle for mean-field stochastic control system with noisy observation, Automatica, 137, 2022 · Zbl 1482.93712 · doi:10.1016/j.automatica.2021.110135
[38] Wang, G.; Zhang, C.; Zhang, W., Stochastic maximum principle for mean-field type optimal control under partial information, IEEE Trans. Autom. Control, 59, 522-528, 2014 · Zbl 1360.93788 · doi:10.1109/TAC.2013.2273265
[39] Wu, Z., Forward-backward stochastic differential equations, linear quadratic stochastic optimal control and nonzero sum differential games, J. Syst. Sci. Complex., 18, 179-192, 2005 · Zbl 1156.93409
[40] Wu, Z.; Zhang, Y., Maximum principle for conditional mean-field FBSDEs systems with regime-switching involving impulse controls, J. Math. Anal. Appl., 530, 2024 · Zbl 1530.93553 · doi:10.1016/j.jmaa.2023.127720
[41] Yin, G.; Zhang, Q., Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2013, New York: Springer, New York · Zbl 1277.60127 · doi:10.1007/978-1-4614-4346-9
[42] Yong, J., A leader-follower stochastic linear quadratic differential game, SIAM J. Control. Optim., 41, 1015-1041, 2002 · Zbl 1039.93070 · doi:10.1137/S0363012901391925
[43] Yong, J., Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM J. Control. Optim., 51, 2809-2838, 2013 · Zbl 1275.49060 · doi:10.1137/120892477
[44] Yong, J.; Zhou, XY, Stochastic Controls: Hamiltonian Systems and HJB Equations, 1999, New York: Springer, New York · Zbl 0943.93002 · doi:10.1007/978-1-4612-1466-3
[45] Yu, Z., An optimal feedback control-strategy pair for zero-sum linear-quadratic stochastic differential game: the Riccati equation approach, SIAM J. Control. Optim., 53, 2141-2167, 2015 · Zbl 1332.60089 · doi:10.1137/130947465
[46] Zhu, C., Optimal control of the risk process in a regime-switching environment, Automatica, 47, 1570-1579, 2011 · Zbl 1226.93143 · doi:10.1016/j.automatica.2011.03.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.