×

A joint model for multivariate longitudinal and survival data to discover the conversion to Alzheimer’s disease. (English) Zbl 07929483

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] TsiatisAA, DafniU, DeGruttolaV, PropertKJ, StrawdermanRL, WulfsohnM. The relationship of CD4 counts over time to survival in patients with AIDS: Is CD4 a good surrogate marker? In: JewellNP (ed.), DietzK (ed.), FarewellVT (ed.), eds. AIDS Epidemiology. Vol 73. Boston, MA: Birkhäuser; 1992:256‐274.
[2] deGruttolaV, TuX. Modelling progression of CD4‐lymphocyte count and its relationship to survival time. Biometrics. 1994;50:1003‐1014. · Zbl 0825.62792
[3] CoxD. Regression models and life‐tables. J Royal Stat Soc Ser B. 1972;34:187‐220. · Zbl 0243.62041
[4] BrownER, IbrahimJG. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics. 2003;59:221‐228. · Zbl 1210.62022
[5] IbrahimJG, ChenMH, SinhaDY. Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials. Stat Sin. 2004;14:863‐883. · Zbl 1073.62100
[6] BarrettJ, SuL. Dynamic prediction using flexible joint models of longitudinal and time‐to‐event data. Stat Med. 2017;36:1447‐1460.
[7] AndrinopoulouE, EilersPH, TakkenbergJJ, RizopoulosD. Improved dynamic prediction from joint models of longitudinal and survival data with time‐varying effects using P‐splines. Biometrics. 2018;74:685‐693. · Zbl 1414.62429
[8] HashemiR, Jacqmin‐GaddaH, CommengesD. A latent process model for joint modeling of events and marker. Lifetime Data Anal. 2003;9:331‐343. · Zbl 1038.62074
[9] Jacqmin‐GaddaH, CommengesD, DartiguesJF. Random change point model for joint modeling of cognitive decline and dementia. Biometrics. 2006;62:254‐260. · Zbl 1091.62134
[10] LiK, LuoS. Functional joint model for longitudinal and time‐to‐event data: an application to Alzheimer’s disease. Stat Med. 2017;36:3560‐3572.
[11] HastieT, TibshiraniR, FriedmanJ. The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd ed.New York, NY: Springer; 2009. · Zbl 1273.62005
[12] GuoR, ZhuH, ChowS, IbrahimJG. Bayesian lasso for semiparametric structural equation models. Biometrics. 2012;68:567‐577. · Zbl 1274.62781
[13] KangK, SongXY, HuXJ, ZhuHT. Bayesian hidden Markov models for delineating the pathology of Alzheimer’s disease. Stat Med. 2019;38:1634‐1650.
[14] LangS, BrezgerA. Bayesian P‐splines. J Comput Graph Stat. 2004;13:183‐212.
[15] SongXY, LuZH. Semiparametric latent variable models with Bayesian P‐splines. J Comput Graph Stat. 2010;19:590‐608.
[16] LeeEJ, ZhuHT, KongDH, WangYL, GiovanelloKS, IbrahimJG. BFLCRM: A Bayesian functional linear Cox regression model for predicting time to conversion to Alzheimer’s disease. Ann Appl Stat. 2015;9:2153‐2178. · Zbl 1397.62456
[17] KongDH, IbrahimJG, LeeEJ, ZhuHT. FLCRM: functional linear Cox regression model. Biometrics. 2018;74:109‐117. · Zbl 1415.62111
[18] SammelM, RyanL. Latent variable models with fixed effects. Biometrics. 1996;52:650‐663. · Zbl 0875.62248
[19] RoyJ, LinXH. Latent variable models for longitudinal data with multiple continuous outcomes. Biometrics. 2000;56:1047‐1054. · Zbl 1060.62565
[20] PanD, HeHJ, SongXY, SunLQ. Regression analysis of additive hazards model with latent variables. J Am Stat Assoc. 2015;110:1148‐1159. · Zbl 1373.62480
[21] PanD, KangK, WangCJ, SongXY. Bayesian proportional hazards model with latent variables. Stat Methods Med Res. 2019;28:986‐1002.
[22] HeHJ, PanD, SongXY, SunLQ. Additive mean residual life model with latent variables under right censoring. Stat Sin. 2019;29:47‐66. · Zbl 1412.62150
[23] SongXY, LeeSY. Basic and Advanced Bayesian Structural Equation Modeling: With Applications in the Medical and Behavioral Sciences. London, UK: Wiley; 2012. · Zbl 1282.62056
[24] IbrahimJG, ChenMH, SinhaD. Bayesian Survival Analysis. New York, NY: Springer‐Verlag; 2001. · Zbl 0978.62091
[25] YinG, IbrahimJG. A general class of Bayesian survival models with zero and nonzero cure fractions. Biometrics. 2005;61:403‐412. · Zbl 1077.62087
[26] PanD, WeiYY, SongXY. Joint analysis of mixed types of outcomes with latent variables. Stat Med. 2021;40:1272‐1284.
[27] RosenbergPS. Hazard function estimation using B‐splines. Biometrics. 1995;51:874‐887. · Zbl 0875.62489
[28] YounesN, LachinJ. Link‐based models for survival data with interval and continuous time censoring. Biometrics. 1997;53:1199‐1211. · Zbl 0911.62113
[29] ZhouXX, SongXY. Mediation analysis for mixture Cox proportional hazards cure models. Stat Methods Med Res. 2021;30:1554‐1572.
[30] CoxDR, HinkleyDV. Theoretical Statistics. London, UK: Chapman & Hall; 1974. · Zbl 0334.62003
[31] HeagertyPJ, ZhengYY. Survival model predictive accuracy and ROC curves. Biometrics. 2005;61:92‐105. · Zbl 1077.62077
[32] RizopoulosD. Dynamic prediction and prospective accuracy in joint models for longitudinal and time‐to‐event data. Biometrics. 2011;67:819‐829. · Zbl 1226.62124
[33] LiTF, XieFC, FengXN, IbrahimJG, ZhuHT. Functional linear regression models for nonignorable missing scalar responses. Stat Sin. 2018;28:1867‐1886. · Zbl 1406.62140
[34] MohsRC, KnopmanD, PetersenRC, et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s disease assessment scale that broaden its scope. Alzheimer Dis Assoc Disord. 1997;11:S13‐S21.
[35] OkuizumiK, OnoderaO, TanakaH, et al. ApoE‐\( \epsilon 4\) and early‐onset Alzheimer’s. Nat Genet. 1994;7:10‐11.
[36] JöreskogKG, SörbomD. LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language. Scientific Software International; 1996.
[37] HelmerC, DamonD, LetenneurL, et al. Marital status and risk of Alzheimer’s disease: a French population‐based cohort study. Neurology. 1999;53:1953‐1958.
[38] CorderEH, SaundersAM, StrittmatterWJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921‐923.
[39] SaundersAM, StrittmatterWJ, SchmechelD, et al. Association of apolipoprotein E allele \(\epsilon 4\) with late‐onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43:1467‐1472.
[40] PodcasyJL, EppersonCL. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci. 2016;18:437‐446.
[41] ViñaJ, LloretA. Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid‐\( \beta\) peptide. J Alzheimers Dis. 2010;20:S527‐S533.
[42] ChenP, RatcliffG, BelleSH, CauleyJA, DekoskyST, GanguliM. Patterns of cognitive decline in presymptomatic Alzheimer disease: a prospective community study. Arch Gen Psychiatry. 2001;58:853‐858.
[43] CloutierS, ChertkowH, KergoatM, GauthierS, BellevilleS. Patterns of cognitive decline prior to dementia in persons with mild cognitive impairment. J Alzheimers Dis. 2015;47:901‐913.
[44] BirksJ. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;CD005593. 1.
[45] NealM, BartonWP. Validation therapy for dementia. Cochrane Database Syst Rev. 2003;3:CD001394.
[46] KutnerMH, NachtsheimCJ, NeterJ. Applied Linear Regression. 4th ed.New York, NY: McGraw‐Hill/Irwin Series; 2004.
[47] WeissNA. Introductory Statistics. 10th ed.Boston, MA: Pearson; 2012.
[48] EscobarM. Estimating normal means with a Dirichlet process prior. J Am Stat Assoc. 1994;89:268‐277. · Zbl 0791.62039
[49] GrambschPM, TherneauTM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81:515‐526. · Zbl 0810.62096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.