×

Bootstrap-assisted inference for generalized Grenander-type estimators. (English) Zbl 07928786

Summary: Westling and Carone (Ann. Statist. 48 (2020) 1001-1024) proposed a framework for studying the large sample distributional properties of generalized Grenander-type estimators, a versatile class of nonparametric estimators of monotone functions. The limiting distribution of those estimators is representable as the left derivative of the greatest convex minorant of a Gaussian process whose monomial mean can be of unknown order (when the degree of flatness of the function of interest is unknown). The standard nonparametric bootstrap is unable to consistently approximate the large sample distribution of the generalized Grenander-type estimators even if the monomial order of the mean is known, making statistical inference a challenging endeavour in applications. To address this inferential problem, we present a bootstrap-assisted inference procedure for generalized Grenander-type estimators. The procedure relies on a carefully crafted, yet automatic, transformation of the estimator. Moreover, our proposed method can be made “flatness robust” in the sense that it can be made adaptive to the (possibly unknown) degree of flatness of the function of interest. The method requires only the consistent estimation of a single scalar quantity, for which we propose an automatic procedure based on numerical derivative estimation and the generalized jackknife. Under random sampling, our inference method can be implemented using a computationally attractive exchangeable bootstrap procedure. We illustrate our methods with examples and we also provide a small simulation study. The development of formal results is made possible by some technical results that may be of independent interest.

MSC:

62G09 Nonparametric statistical resampling methods
62G20 Asymptotic properties of nonparametric inference
62G07 Density estimation
62G08 Nonparametric regression and quantile regression

References:

[1] BRUNK, H. D. (1958). On the estimation of parameters restricted by inequalities. Ann. Math. Stat. 29 437-454. Digital Object Identifier: 10.1214/aoms/1177706621 Google Scholar: Lookup Link MathSciNet: MR0132632 · Zbl 0087.34302 · doi:10.1214/aoms/1177706621
[2] CATTANEO, M. D., JANSSON, M. and NAGASAWA, K. (2020). Bootstrap-based inference for cube root asymptotics. Econometrica 88 2203-2219. Digital Object Identifier: 10.3982/ecta17950 Google Scholar: Lookup Link MathSciNet: MR4162697 · Zbl 1467.62138 · doi:10.3982/ecta17950
[3] CATTANEO, M. D., JANSSON, M. and NAGASAWA, K. (2024). Supplement to “Bootstrap-Assisted Inference for Generalized Grenander-type Estimators.” https://doi.org/10.1214/24-AOS2402SUPP
[4] CAVALIERE, G. and GEORGIEV, I. (2020). Inference under random limit bootstrap measures. Econometrica 88 2547-2574. Digital Object Identifier: 10.3982/ECTA16557 Google Scholar: Lookup Link MathSciNet: MR4192549 · Zbl 1467.62066 · doi:10.3982/ECTA16557
[5] Chernoff, H. (1964). Estimation of the mode. Ann. Inst. Statist. Math. 16 31-41. Digital Object Identifier: 10.1007/BF02868560 Google Scholar: Lookup Link MathSciNet: MR0172382 · Zbl 0212.21802 · doi:10.1007/BF02868560
[6] COX, G. (2022). A generalized argmax theorem with applications. Preprint. Available at arXiv:2209.08793.
[7] Grenander, U. (1956). On the theory of mortality measurement. II. Skand. Aktuarietidskr. 39 125-153. Digital Object Identifier: 10.1080/03461238.1956.10414944 Google Scholar: Lookup Link MathSciNet: MR0093415 · Zbl 0077.33715 · doi:10.1080/03461238.1956.10414944
[8] Groeneboom, P. (1985). Estimating a monotone density. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1983). Wadsworth Statist./Probab. Ser. 539-555. Wadsworth, Belmont, CA. MathSciNet: MR0822052 · Zbl 1373.62144
[9] Groeneboom, P. and Jongbloed, G. (2014). Nonparametric Estimation Under Shape Constraints: Estimators, Algorithms and Asymptotics. Cambridge Series in Statistical and Probabilistic Mathematics 38. Cambridge Univ. Press, New York. Digital Object Identifier: 10.1017/CBO9781139020893 Google Scholar: Lookup Link MathSciNet: MR3445293 · Zbl 1338.62008 · doi:10.1017/CBO9781139020893
[10] GROENEBOOM, P. and JONGBLOED, G. (2018). Some developments in the theory of shape constrained inference. Statist. Sci. 33 473-492. Digital Object Identifier: 10.1214/18-STS657 Google Scholar: Lookup Link MathSciNet: MR3881204 · Zbl 1407.62108 · doi:10.1214/18-STS657
[11] HAN, Q. and KATO, K. (2022). Berry-Esseen bounds for Chernoff-type nonstandard asymptotics in isotonic regression. Ann. Appl. Probab. 32 1459-1498. Digital Object Identifier: 10.1214/21-aap1716 Google Scholar: Lookup Link MathSciNet: MR4414710 · Zbl 07522879 · doi:10.1214/21-aap1716
[12] HONG, H. and LI, J. (2020). The numerical bootstrap. Ann. Statist. 48 397-412. Digital Object Identifier: 10.1214/19-AOS1812 Google Scholar: Lookup Link MathSciNet: MR4065167 · Zbl 1440.62102 · doi:10.1214/19-AOS1812
[13] Huang, J. and Wellner, J. A. (1995). Estimation of a monotone density or monotone hazard under random censoring. Scand. J. Stat. 22 3-33. MathSciNet: MR1334065 · Zbl 0827.62032
[14] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191-219. Digital Object Identifier: 10.1214/aos/1176347498 Google Scholar: Lookup Link MathSciNet: MR1041391 · Zbl 0703.62063 · doi:10.1214/aos/1176347498
[15] Kosorok, M. R. (2008). Bootstrapping in Grenander estimator. In Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen. Inst. Math. Stat. (IMS) Collect. 1 282-292. IMS, Beachwood, OH. Digital Object Identifier: 10.1214/193940307000000202 Google Scholar: Lookup Link MathSciNet: MR2462212 · doi:10.1214/193940307000000202
[16] KUCHIBHOTLA, A. K., BALAKRISHNAN, S. and WASSERMAN, L.. (2024). The HulC: Confidence regions from convex hulls. J. R. Stat. Soc. Ser. B. Stat. Methodol.
[17] LEE, S. M. S. and YANG, P. (2020). Bootstrap confidence regions based on M-estimators under nonstandard conditions. Ann. Statist. 48 274-299. Digital Object Identifier: 10.1214/18-AOS1803 Google Scholar: Lookup Link MathSciNet: MR4065162 · Zbl 1466.62315 · doi:10.1214/18-AOS1803
[18] MALLICK, S., SARKAR, S. and KUCHIBHOTLA, A. K. (2024). New asymptotic limit theory and inference for monotone regression. Preprint. Available at arXiv:2310.20058.
[19] Politis, D. N. and Romano, J. P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. Ann. Statist. 22 2031-2050. Digital Object Identifier: 10.1214/aos/1176325770 Google Scholar: Lookup Link MathSciNet: MR1329181 · Zbl 0828.62044 · doi:10.1214/aos/1176325770
[20] Politis, D. N., Romano, J. P. and Wolf, M. (1999). Subsampling. Springer Series in Statistics. Springer, New York. Digital Object Identifier: 10.1007/978-1-4612-1554-7 Google Scholar: Lookup Link MathSciNet: MR1707286 · Zbl 0931.62035 · doi:10.1007/978-1-4612-1554-7
[21] Sen, B., Banerjee, M. and Woodroofe, M. (2010). Inconsistency of bootstrap: The Grenander estimator. Ann. Statist. 38 1953-1977. Digital Object Identifier: 10.1214/09-AOS777 Google Scholar: Lookup Link MathSciNet: MR2676880 · Zbl 1202.62057 · doi:10.1214/09-AOS777
[22] Seo, M. H. and Otsu, T. (2018). Local M-estimation with discontinuous criterion for dependent and limited observations. Ann. Statist. 46 344-369. Digital Object Identifier: 10.1214/17-AOS1552 Google Scholar: Lookup Link MathSciNet: MR3766955 · Zbl 1394.62058 · doi:10.1214/17-AOS1552
[23] van der Laan, M. J. and Robins, J. M. (2003). Unified methods for censored longitudinal data and causality. Springer series in statistics. Springer, New York. Digital Object Identifier: 10.1007/978-0-387-21700-0 Google Scholar: Lookup Link MathSciNet: MR1958123 · Zbl 1013.62034 · doi:10.1007/978-0-387-21700-0
[24] VAN DER VAART, A. and VAN DER LAAN, M. J. (2006). Estimating a survival distribution with current status data and high-dimensional covariates. Int. J. Biostat. 2 Art. 9, 42 pp. Digital Object Identifier: 10.2202/1557-4679.1014 Google Scholar: Lookup Link MathSciNet: MR2306498 · doi:10.2202/1557-4679.1014
[25] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.1017/CBO9780511802256 Google Scholar: Lookup Link MathSciNet: MR1652247 · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
[26] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Series in Statistics. Springer, New York. Digital Object Identifier: 10.1007/978-1-4757-2545-2 Google Scholar: Lookup Link MathSciNet: MR1385671 · Zbl 0862.60002 · doi:10.1007/978-1-4757-2545-2
[27] WESTLING, T. and CARONE, M. (2020). A unified study of nonparametric inference for monotone functions. Ann. Statist. 48 1001-1024. Digital Object Identifier: 10.1214/19-AOS1835 Google Scholar: Lookup Link MathSciNet: MR4102685 · Zbl 1448.62042 · doi:10.1214/19-AOS1835
[28] WESTLING, T., GILBERT, P. and CARONE, M. (2020). Causal isotonic regression. J. R. Stat. Soc. Ser. B. Stat. Methodol. 82 719-747. Digital Object Identifier: 10.1111/rssb.12372 Google Scholar: Lookup Link MathSciNet: MR4112782 · Zbl 07554771 · doi:10.1111/rssb.12372
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.