×

Selected topics on Wiener index. (English) Zbl 07926866

Summary: The Wiener index is defined as the sum of distances between all unordered pairs of vertices in a graph. It is one of the most recognized and well-researched topological indices, which is on the other hand still a very active area of research. This work presents a natural continuation of the paper [M. Knor et al., Ars Math. Contemp. 11, No. 2, 327–352 (2016; Zbl 1355.05099)] in which several interesting open questions on the topic were outlined. Here we collect answers gathered so far, give further insights on the topic of extremal values of Wiener index in different settings, and present further intriguing problems and conjectures.

MSC:

05C09 Graphical indices (Wiener index, Zagreb index, Randić index, etc.)
05C05 Trees
05C12 Distance in graphs
05C20 Directed graphs (digraphs), tournaments
05C92 Chemical graph theory
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)

References:

[1] M. Akhmejanova, K. Olmezov, A. Volostnov, I. Vorobyev, K. Vorob’ev and Y. Yarovikov, Wiener index and graphs, almost half of whose vertices satisfy Šoltés property, Discrete Appl. Math. 325 (2023), 37-42, doi:10.1016/j.dam.2022.09.021, https://doi.org/10. 1016/j.dam.2022.09.021. · Zbl 1504.05059 · doi:10.1016/j.dam.2022.09.021
[2] A. Ali, W. Iqbal, Z. Raza, E. E. Ali, J.-B. Liu, F. Ahmad and Q. A. Chaudhry, Some vertex/edge-degree-based topological indices of r-apex trees, J. Math. (2021), Art. ID 4349074, 8 pp., doi: 10.1155/2021/4349074, https://doi.org/10.1155/2021/4349074. · Zbl 1477.05023 · doi:10.1155/2021/4349074
[3] Y. Alizadeh, V. Andova, S. Klavžar and R. Škrekovski, Wiener dimension: fundamental prop-erties and (5, 0)-nanotubical fullerenes, MATCH Commun. Math. Comput. Chem. 72 (2014), 279-294, https://match.pmf.kg.ac.rs/content72n1.htm. · Zbl 1464.05053
[4] A. Alochukwu and P. Dankelmann, Wiener index in graphs with given minimum degree and maximum degree, Discrete Math. Theor. Comput. Sci. 23 (2021), Paper No. 11, 18 pp., doi: 10.46298/dmtcs.6956, https://doi.org/10.46298/dmtcs.6956. · Zbl 1498.05066 · doi:10.46298/dmtcs.6956
[5] N. Bašić, M. Knor and R. Škrekovski, On regular graphs with Šoltés vertices, 2023, arXiv:2303.11996 [math.CO].
[6] S. Bessy, F. Dross, K. Hriňáková, M. Knor and R. Škrekovski, Maximal Wiener index for graphs with prescribed number of blocks, Appl. Math. Comput. 380 (2020), 125274, 7 pp., doi: 10.1016/j.amc.2020.125274, https://doi.org/10.1016/j.amc.2020.125274. · Zbl 1460.05042 · doi:10.1016/j.amc.2020.125274
[7] S. Bessy, F. Dross, K. Hriňáková, M. Knor and R. Škrekovski, The structure of graphs with given number of blocks and the maximum Wiener index, J. Comb. Optim. 39 (2020), 170-184, doi:10.1007/s10878-019-00462-6, https://doi.org/10.1007/ s10878-019-00462-6. · Zbl 1434.05042 · doi:10.1007/s10878-019-00462-6
[8] S. Bessy, F. Dross, M. Knor and R. Škrekovski, Graphs with the second and third maximum Wiener indices over the 2-vertex connected graphs, Discrete Appl. Math. 284 (2020), 195-200, doi:10.1016/j.dam.2020.03.032, https://doi.org/10.1016/j. dam.2020.03.032. · Zbl 1443.05039 · doi:10.1016/j.dam.2020.03.032
[9] J. Bok, N. Jedličková and J. Maxová, On relaxed Šoltés’s problem, Acta Math. Univ. Comenian. (N.S.) 88 (2019), 475-480, http://www.iam.fmph.uniba.sk/amuc/ojs/index. php/amuc/article/view/1173.
[10] J. Bok, N. Jedličková and J. Maxová, A relaxed version of Šoltés’s problem and cactus graphs, Bull. Malays. Math. Sci. Soc. 44 (2021), 3733-3745, doi:10.1007/s40840-021-01144-5, https://doi.org/10.1007/s40840-021-01144-5. · Zbl 1476.05028 · doi:10.1007/s40840-021-01144-5
[11] D. Bonchev, Complexity of Protein-Protein Interaction Networks, Complexes, and Path-ways, in: P. M. Conn (ed.), Handbook of Proteomic Methods, Humana Press, Totowa, NJ, pp. 451-462, 2003, doi:10.1007/978-1-59259-414-6 31, https://doi.org/10.1007/ 978-1-59259-414-6_31. · doi:10.1007/978-1-59259-414-6_31
[12] D. Bonchev, On the complexity of directed biological networks, SAR QSAR Environ Res. 14 (2003), 199-214, doi:10.1080/1062936031000101764, https://doi.org/10.1080/ 1062936031000101764. · doi:10.1080/1062936031000101764
[13] V. Božović, Ž. K. Vukićević, G. Popivoda, R.-Y. Pan and X.-D. Zhang, Extreme Wiener in-dices of trees with given number of vertices of maximum degree, Discrete Appl. Math. 304 (2021), 23-31, doi:10.1016/j.dam.2021.07.019, https://doi.org/10.1016/j.dam. 2021.07.019. · Zbl 1473.05061 · doi:10.1016/j.dam.2021.07.019
[14] S. Cambie, An asymptotic resolution of a problem of Plesník, J. Combin. Theory Ser. B 145 (2020), 341-358, doi:10.1016/j.jctb.2020.06.003, https://doi.org/10.1016/j. jctb.2020.06.003. · Zbl 1448.05085 · doi:10.1016/j.jctb.2020.06.003
[15] S. Cambie, Extremal total distance of graphs of given radius I, J. Graph Theory 97 (2021), 104-122, doi:10.1002/jgt.22644, https://doi.org/10.1002/jgt.22644. · Zbl 1536.05155 · doi:10.1002/jgt.22644
[16] S. Cambie and J. Haslegrave, On the relationship between variable Wiener index and variable Szeged index, Appl. Math. Comput. 431 (2022), Paper No. 127320, 8 pp., doi:10.1016/j.amc. 2022.127320, https://doi.org/10.1016/j.amc.2022.127320. · Zbl 1510.05033 · doi:10.1016/j.amc.2022.127320
[17] Y. Chen, B. Wu and X. An, Wiener index of graphs with radius two, ISRN Comb. 2013 (2013), Article ID 906756, 5 pp., doi:10.1155/2013/906756, https://doi.org/10. 1155/2013/906756. · Zbl 1264.05043 · doi:10.1155/2013/906756
[18] Y.-Z. Chen, X. Li and X.-D. Zhang, The extremal average distance of cubic graphs, J. Graph Theory 103 (2023), 713-739, doi:10.1002/jgt.22943, https://doi.org/10. 1002/jgt.22943. · Zbl 1526.05039 · doi:10.1002/jgt.22943
[19] P. Dankelmann, On the Wiener index of orientations of graphs, Discrete Appl. Math. 336 (2023), 125-131, doi:10.1016/j.dam.2023.04.004, https://doi.org/10.1016/j. dam.2023.04.004. · Zbl 1520.05025 · doi:10.1016/j.dam.2023.04.004
[20] P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, The edge-Wiener index of a graph, Discrete Math. 309 (2009), 3452-3457, doi:10.1016/j.disc.2008.09.040, https: //doi.org/10.1016/j.disc.2008.09.040. · Zbl 1188.05059 · doi:10.1016/j.disc.2008.09.040
[21] K. C. Das and M. J. Nadjafi-Arani, On maximum Wiener index of trees and graphs with given radius, J. Comb. Optim. 34 (2017), 574-587, doi:10.1007/s10878-016-0092-y, https:// doi.org/10.1007/s10878-016-0092-y. · Zbl 1376.05039 · doi:10.1007/s10878-016-0092-y
[22] E. DeLaViña and B. Waller, Spanning trees with many leaves and average distance, Electron. J. Comb. 15 (2008), Research Paper 33, 16 pp., doi:10.37236/757, https://doi.org/10. 37236/757. · Zbl 1181.05052 · doi:10.37236/757
[23] H.-Y. Deng, The trees on n ≥ 9 vertices with the first to seventeenth greatest Wiener indices are chemical trees, MATCH Commun. Math. Comput. Chem. 57 (2007), 393-402, https: //match.pmf.kg.ac.rs/content57n2.htm. · Zbl 1150.05007
[24] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and appli-cations, Acta Appl. Math. 66 (2001), 211-249, doi:10.1023/A:1010767517079, https: //doi.org/10.1023/A:1010767517079. · Zbl 0982.05044 · doi:10.1023/A:1010767517079
[25] A. A. Dobrynin and I. Gutman, Solving a problem connected with distances in graphs, Graph Theory Notes N. Y. 28 (1995), 21-23.
[26] A. A. Dobrynin, I. Gutman, S. Klavžar and P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), 247-294, doi:10.1023/A:1016290123303, https://doi.org/10. 1023/A:1016290123303. · Zbl 0993.05059 · doi:10.1023/A:1016290123303
[27] A. A. Dobrynin and L. S. Mel’nikov, Wiener index of line graphs, in: I. Gutman and B. Furtula (eds.), Distance in Molecular Graphs -Theory, Univ. Kragujevac, Kragujevac, volume 12 of Math. Chem. Monogr., pp. 85-121, 2012.
[28] H. Dong and X. Guo, Ordering trees by their Wiener indices, MATCH Commun. Math. Comput. Chem. 56 (2006), 527-540, https://match.pmf.kg.ac.rs/content56n3.htm. · Zbl 1119.05310
[29] H. Dong and B. Zhou, Maximum Wiener index of unicyclic graphs with fixed maximum de-gree, Ars Comb. 103 (2012), 407-416. · Zbl 1265.05183
[30] R. C. Entringer, D. E. Jackson and D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26(101) (1976), 283-296. · Zbl 0329.05112
[31] G. Exoo and R. Jajcay, Dynamic cage survey, Electron. J. Comb. (2013), #DS16, doi:10.37236/ 37, https://doi.org/10.37236/37. · doi:10.37236/37
[32] Y. Fang and Y. Gao, Counterexamples to the conjecture on orientations of graphs with minimum Wiener index, Discrete Appl. Math. 232 (2017), 213-220, doi:10.1016/j.dam.2017.07.007, https://doi.org/10.1016/j.dam.2017.07.007. · Zbl 1372.05070 · doi:10.1016/j.dam.2017.07.007
[33] M. Fischermann, A. Hoffmann, D. Rautenbach, L. Székely and L. Volkmann, Wiener in-dex versus maximum degree in trees, Discrete Appl. Math. 122 (2002), 127-137, doi: 10.1016/S0166-218X(01)00357-2, https://doi.org/10.1016/S0166-218X(01) 00357-2. · Zbl 0993.05061 · doi:10.1016/S0166-218X(01)00357-2
[34] I. Gutman, A formula for the wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N. Y. 27 (1994), 9-15.
[35] I. Gutman, Distance of line graphs, Graph Theory Notes N. Y. 31 (1996), 49-52.
[36] I. Gutman, A property of the wiener number and its modifications, Indian J. Chem. 36A (1997), 128-132.
[37] I. Gutman, W. Linert, I. Lukovits and A. A. Dobrynin, Trees with extremal hyper-wiener index: Mathematical basis and chemical applications, J. Chem. Inf. Comput. Sci. 37 (1997), 349-354, doi:10.1021/ci960139m, https://doi.org/10.1021/ci960139m. · doi:10.1021/ci960139m
[38] I. Gutman, D. Vukičević and J. Žerovnik, A class of modified wiener indices, Croat. Chem. Acta 77 (2004), 103-109.
[39] M. A. Henning and O. R. Oellermann, The average connectivity of a digraph, Discrete Appl. Math. 140 (2004), 143-153, doi:10.1016/j.dam.2003.04.003, https://doi.org/ 10.1016/j.dam.2003.04.003. · Zbl 1047.05024 · doi:10.1016/j.dam.2003.04.003
[40] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971), 2332-2339, doi:10.1246/bcsj.44.2332, https://doi.org/10.1246/bcsj.44.2332. · doi:10.1246/bcsj.44.2332
[41] K. Hriňáková, M. Knor and R. Škrekovski, On a conjecture about the ratio of Wiener index in iterated line graphs, Art Discrete Appl. Math. 1 (2018), Paper No. 1.09, 9 pp., doi:10.26493/ 2590-9770.1257.dda, https://doi.org/10.26493/2590-9770.1257.dda. · Zbl 1421.05037 · doi:10.26493/2590-9770.1257.dda
[42] K. Hriňáková, M. Knor and R. Škrekovski, An inequality between variable Wiener index and variable Szeged index, Appl. Math. Comput. 362 (2019), 124557, 6 pp., doi:10.1016/j.amc. 2019.124557, https://doi.org/10.1016/j.amc.2019.124557. · Zbl 1433.05081 · doi:10.1016/j.amc.2019.124557
[43] Y. Hu, Z. Zhu, P. Wu, Z. Shao and A. Fahad, On investigations of graphs preserving the Wiener index upon vertex removal, AIMS Math. 6 (2021), 12976-12985, doi:10.3934/math.2021750, https://doi.org/10.3934/math.2021750. · Zbl 1525.05024 · doi:10.3934/math.2021750
[44] F. Jelen, Superdominance order and distance of trees, Ph.D. thesis, RWTH Aachen, Germany, 2002.
[45] F. Jelen and E. Triesch, Superdominance order and distance of trees with bounded maximum degree, Discrete Appl. Math. 125 (2003), 225-233, doi:10.1016/S0166-218X(02)00195-6, https://doi.org/10.1016/S0166-218X(02)00195-6. · Zbl 1009.05052 · doi:10.1016/S0166-218X(02)00195-6
[46] P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman and G. Dömötör, The Szeged index and an analogy with the Wiener index, J. Chem. Inf. Comput. Sci. 35 (1995), 547-550, doi:10.1021/ci00025a024, https://doi.org/10.1021/ci00025a024. · doi:10.1021/ci00025a024
[47] S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (1996), 45-49, doi:10.1016/0893-9659(96)00071-7, https://doi.org/10. 1016/0893-9659(96)00071-7. · Zbl 0903.05020 · doi:10.1016/0893-9659(96)00071-7
[48] M. Knor, M. Imran, M. K. Jamil and R. Škrekovski, Remarks on distance based topological indices for -apex trees, Symmetry 12 (2020), 802, doi:10.3390/sym12050802, https:// doi.org/10.3390/sym12050802. · doi:10.3390/sym12050802
[49] M. Knor, S. Majstorović and R. Škrekovski, Graphs preserving Wiener index upon vertex removal, Appl. Math. Comput. 338 (2018), 25-32, doi:10.1016/j.amc.2018.05.047, https: //doi.org/10.1016/j.amc.2018.05.047. · Zbl 1427.05072 · doi:10.1016/j.amc.2018.05.047
[50] M. Knor, S. Majstorović and R. Škrekovski, Graphs whose Wiener index does not change when a specific vertex is removed, Discrete Appl. Math. 238 (2018), 126-132, doi:10.1016/j. dam.2017.12.012, https://doi.org/10.1016/j.dam.2017.12.012. · Zbl 1380.05048 · doi:10.1016/j.dam.2017.12.012
[51] M. Knor, S. Majstorović and R. Škrekovski, Some results on wiener index of a graph: an overview, in: T. Došlić and I. Martinjak (eds.), Proceedings of the 2nd Croatian Combinatorial Days, Faculty of Civil Engineering, University of Zagreb, Zagreb, pp. 49-56, 2019, doi:10. 5592/CO/CCD.2018.04, http://www.grad.hr/crocodays/croc_proc_2.html. · doi:10.5592/CO/CCD.2018.04
[52] M. Knor and R. Škrekovski, Wiener index of line graphs, in: M. Dehmer and F. Emmert-Streib (eds.), Quantitative Graph Theory: Mathematical Foundations and Applications, CRC Press, Boca Raton, pp. 279-301, 2014.
[53] M. Knor and R. Škrekovski, On maximum Wiener index of directed grids, Art Discrete Appl. Math. 6 (2023), Paper No. 3.02, 17 pp., doi:10.26493/2590-9770.1526.2b3, https://doi. org/10.26493/2590-9770.1526.2b3. · Zbl 1512.05096 · doi:10.26493/2590-9770.1526.2b3
[54] M. Knor, R. Škrekovski and A. Tepeh, An inequality between the edge-Wiener index and the Wiener index of a graph, Appl. Math. Comput. 269 (2015), 714-721, doi:10.1016/j.amc.2015. 07.050, https://doi.org/10.1016/j.amc.2015.07.050. · Zbl 1410.05049 · doi:10.1016/j.amc.2015.07.050
[55] M. Knor, R. Škrekovski and A. Tepeh, Digraphs with large maximum Wiener index, Appl. Math. Comput. 284 (2016), 260-267, doi:10.1016/j.amc.2016.03.007, https://doi.org/ 10.1016/j.amc.2016.03.007. · Zbl 1410.05079 · doi:10.1016/j.amc.2016.03.007
[56] M. Knor, R. Škrekovski and A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp. 11 (2016), 327-352, doi:10.26493/1855-3974.795.ebf, https://doi.org/10. 26493/1855-3974.795.ebf. · Zbl 1355.05099 · doi:10.26493/1855-3974.795.ebf
[57] M. Knor, R. Škrekovski and A. Tepeh, Orientations of graphs with maximum Wiener index, Discrete Appl. Math. 211 (2016), 121-129, doi:10.1016/j.dam.2016.04.015, https://doi. org/10.1016/j.dam.2016.04.015. · Zbl 1348.05066 · doi:10.1016/j.dam.2016.04.015
[58] M. Knor, R. Škrekovski and A. Tepeh, Some remarks on Wiener index of oriented graphs, Appl. Math. Comput. 273 (2016), 631-636, doi:10.1016/j.amc.2015.10.033, https://doi.org/ 10.1016/j.amc.2015.10.033. · Zbl 1410.05048 · doi:10.1016/j.amc.2015.10.033
[59] M. Knor, R. Škrekovski and A. Tepeh, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanovic and I. Milovanovic (eds.), Bounds in Chemical Graph Theory -Advances, Univ. Kragujevac, Kragujevac, volume 21 of Math. Chem. Monogr., pp. 141-153, 2017.
[60] M. Knor, R. Škrekovski and A. Tepeh, Chemical graphs with the minimum value of Wiener index, MATCH Commun. Math. Comput. Chem. 81 (2019), 119-132, https://match. pmf.kg.ac.rs/content81n1.htm. · Zbl 1471.92444
[61] Z. Li and B. Wu, Orientations of graphs with maximum wiener index, manuscript. · Zbl 1348.05066
[62] H. Lin, A note on the maximal Wiener index of trees with given number of vertices of maximum degree, MATCH Commun. Math. Comput. Chem. 72 (2014), 783-790, https://match. pmf.kg.ac.rs/content72n3.htm. · Zbl 1464.05093
[63] H. Liu and X.-F. Pan, On the Wiener index of trees with fixed diameter, MATCH Com-mun. Math. Comput. Chem. 60 (2008), 85-94, https://match.pmf.kg.ac.rs/ content60n1.htm. · Zbl 1199.05092
[64] M. Liu, B. Liu and Q. Li, Erratum to ’The trees on n ≥ 9 vertices with the first to seven-teenth greatest Wiener indices are chemical trees’, MATCH Commun. Math. Comput. Chem. 64 (2010), 743-756, https://match.pmf.kg.ac.rs/content64n3.htm. · Zbl 1265.05196
[65] E. Loz, H. Péres-Rosés and G. Pineda-Villavicencio, The degree diameter problem for general graphs, Combinatorics Wiki, 18 February 2022, 5:45 UTC, [accessed 9 Novem-ber 2023], http://combinatoricswiki.org/wiki/The_Degree_Diameter_Problem_for_General_Graphs.
[66] M. Miller and J. Širáň, Moore graphs and beyond: a survey of the degree/diameter problem, Electron. J. Comb. (2013), #DS14v2, doi:10.37236/35, https://doi.org/10.37236/ 35. · doi:10.37236/35
[67] J. W. Moon, On the total distance between nodes in tournaments, Discrete Math. 151 (1996), 169-174, doi:10.1016/0012-365X(94)00094-Y, https://doi.org/10.1016/ 0012-365X(94)00094-Y. · Zbl 0854.05041 · doi:10.1016/0012-365X(94)00094-Y
[68] S. Mukwembi and T. Vetrík, Wiener index of trees of given order and diameter at most 6, Bull. Aust. Math. Soc. 89 (2014), 379-396, doi:10.1017/S0004972713000816, https: //doi.org/10.1017/S0004972713000816. · Zbl 1292.05102 · doi:10.1017/S0004972713000816
[69] J. Plesník, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984), 1-21, doi:10.1002/jgt.3190080102, https://doi.org/10.1002/jgt.3190080102. · Zbl 0552.05048 · doi:10.1002/jgt.3190080102
[70] J. Sedlar and R. Škrekovski, A note on the maximum value of W (L(G))/W (G), MATCH Commun. Math. Comput. Chem. 88 (2022), 171-178, https://match.pmf.kg.ac.rs/ content88n1.htm. · Zbl 1497.92368
[71] L. Šoltés, Transmission in graphs: a bound and vertex removing, Math. Slovaca 41 (1991), 11-16, https://eudml.org/doc/32286. · Zbl 0765.05097
[72] S. Spiro, The Wiener index of signed graphs, Appl. Math. Comput. 416 (2022), Paper No. 126755, 10 pp., doi:10.1016/j.amc.2021.126755, https://doi.org/10.1016/j.amc. 2021.126755. · Zbl 1510.05043 · doi:10.1016/j.amc.2021.126755
[73] D. Stevanović, Maximizing Wiener index of graphs with fixed maximum degree, MATCH Commun. Math. Comput. Chem. 60 (2008), 71-83, https://match.pmf.kg.ac.rs/ content60n1.htm. · Zbl 1274.05137
[74] D. Stevanović, N. Milosavljević and D. Vukičević, A few examples and counterexamples in spectral graph theory, Discuss. Math. Graph Theory 40 (2020), 637-662, doi:10.7151/dmgt. 2275, https://doi.org/10.7151/dmgt.2275. · Zbl 1433.05211 · doi:10.7151/dmgt.2275
[75] T. K. Šumenjak, S. Špacapan and D. Štesl, A proof of a conjecture on maximum Wiener index of oriented ladder graphs, J. Appl. Math. Comput. 67 (2021), 481-493, doi:10.1007/ s12190-021-01498-w, https://doi.org/10.1007/s12190-021-01498-w. · Zbl 1487.05107 · doi:10.1007/s12190-021-01498-w
[76] Q. Sun, B. Ikica, R. Škrekovski and V. Vukašinović, Graphs with a given diameter that max-imise the Wiener index, Appl. Math. and Comput. 356 (2019), 438-448, doi:10.1016/j.amc. 2019.03.025, https://doi.org/10.1016/j.amc.2019.03.025. · Zbl 1428.05072 · doi:10.1016/j.amc.2019.03.025
[77] A. C. M. van Rooij and H. S. Wilf, The interchange graph of a finite graph, Acta Math. Acad. Sci. Hungar. 16 (1965), 263-269, doi:10.1007/BF01904834, https://doi.org/ 10.1007/BF01904834. · Zbl 0139.17203 · doi:10.1007/BF01904834
[78] Ž. K. Vukićević and L. Bulatović, On the variable Wiener-Szeged inequality, Discrete Appl. Math. 307 (2022), 15-18, doi:10.1016/j.dam.2021.10.007, https://doi.org/10. 1016/j.dam.2021.10.007. · Zbl 1479.05066 · doi:10.1016/j.dam.2021.10.007
[79] S. Wang and X. Guo, Trees with extremal Wiener indices, MATCH Commun. Math. Comput. Chem. 60 (2008), 609-622, https://match.pmf.kg.ac.rs/content60n2.htm. · Zbl 1199.05099
[80] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20, doi:10.1021/ja01193a005, https://doi.org/10.1021/ja01193a005. · doi:10.1021/ja01193a005
[81] K. Xu, M. Liu, K. C. Das, I. Gutman and B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014), 461-508, https://match.pmf.kg.ac.rs/content71n3.htm. · Zbl 1464.05140
[82] K. Xu, J. Wang, K. C. Das and S. Klavžar, Weighted Harary indices of apex trees and k-apex trees, Discrete Appl. Math. 189 (2015), 30-40, doi:10.1016/j.dam.2015.01.044, https: //doi.org/10.1016/j.dam.2015.01.044. · Zbl 1316.05030 · doi:10.1016/j.dam.2015.01.044
[83] K. Xu, Z. Zheng and K. C. Das, Extremal t-apex trees with respect to matching energy, Complexity 21 (2015), 238-247, doi:10.1002/cplx.21651, https://doi.org/10.1002/ cplx.21651. · doi:10.1002/cplx.21651
[84] Z. You and B. Liu, Note on the minimal Wiener index of connected graphs with n vertices and radius r, MATCH Commun. Math. Comput. Chem. 66 (2011), 343-344, https://match. pmf.kg.ac.rs/content66n1.htm. · Zbl 1264.05040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.