×

Ambrosetti-Prodi type results for elliptic equations with nonlinear gradient terms on an exterior domain. (English) Zbl 07926199

Summary: The aim of this paper is to establish an Ambrosetti-Prodi type result for the problem \[ \begin{cases} -\Delta u = K (|x|) f(|x|, u, |\nabla u|) +s\varphi, \quad x\in\Omega, \\ \alpha u + \beta \frac{\partial u}{\partial n}|_{\partial\Omega} = 0, \\ \lim_{|x|\to\infty} u(x)=0, \end{cases} \]where \(s\in\mathbb{R}\) is a parameter, \(\Omega=\{ x\in\mathbb{R}^N:|x|<r_0\}\), \(N\geq 3\), \(K:[r_0, \infty) \to [0, +\infty)\) is continuous and satisfies \(\int^\infty_{r_0} r^{N-1}K(r)dr <\infty\). \(f : [r_0, \infty) \times\mathbb{R}\times [0, +\infty) \to\mathbb{R}\) is continuous. \(\varphi\in C(\overline{\Omega})\) with \(\varphi \gneqq 0 \) in \(\omega\).

MSC:

35J25 Boundary value problems for second-order elliptic equations
35J60 Nonlinear elliptic equations
47H11 Degree theory for nonlinear operators
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Alves, C.O., de Lima, N., Romildo, Nóbrega, and Alânnio, B., On an Ambrosetti-Prodi type problem in ℝ^N, J. Fixed Point Theory Appl. 25 (2023), Paper No. 12. doi: · Zbl 1505.35211
[2] Amann, H. and Hess, P., A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A84 (1979), 145-151. doi: · Zbl 0416.35029
[3] Ambrosetti, A. and Prodi, G., On the inversion of some differentiable mappings with singularities between Banach spaces, Anna. Mat. Pura Appl. 93 (1972), 231-246. doi: · Zbl 0288.35020
[4] Arcoya, D. and Ruiz, D., The Ambrosetti-Prodi problem for the p-Laplacian operator, Comm. Partial Differential Equations31 (2006), 849-865. doi: · Zbl 1101.35033
[5] Berger, M.S. and Podolak, E., On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24 (1975), 837-846. doi: · Zbl 0329.35026
[6] Dancer, E.B., On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures Appl. 57 (1978), 351-366. · Zbl 0394.35040
[7] Bonheure, D., Colasuonno, F., and Földes, J., On the Born-Infeld equation for electrostatic fields with a superposition of point charges, Ann. Mat. Pura Appl. 198 (2019), 749-772. doi: · Zbl 1420.35395
[8] Deimling, K., Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. · Zbl 0559.47040
[9] Faria, L.F.O., Miyagaki, O.H., Motreanu, D., and Tanaka, M., Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient, Nonlinear Anal. 96 (2014), 154-166. doi: · Zbl 1285.35014
[10] De Figueiredo, D.G. and Ubilla, P., Superlinear systems of second-order ODE’s, Nonlinear Anal. 68 (2008), 1765-1773. doi: · Zbl 1137.34320
[11] Habets, P. and Omari, P., Existence and localization of solutions of second order elliptic problems using lower and upper solutions in the reversed order, Topol. Methods Nonlinear Anal. 8 (1996), 25-56. doi: · Zbl 0897.35030
[12] Hess, P., On a nonlinear elliptic boundary value problem of the Ambrosetti-Prodi type, Boll. Un. Mat. Ital. A17 (1980), 187-192. · Zbl 0519.35028
[13] Kazdan, J.L. and Warner, F.W., Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. doi: · Zbl 0325.35038
[14] Li, Y., Ding, Y., and Ibrahim, E., Positive radial solutions for elliptic equations with nonlinear gradient terms on an exterior domain, Mediterr. J. Math. 15 (2018), Paper No. 83. · Zbl 1395.35085
[15] Mawhin, J., Ambrosetti-Prodi type results in nonlinear boundary value problems, In: Differential Equations and Mathematical Physics (Birmingham, Ala., 1986), Lecture Notes in Math., Vol. 1285, pp. 290-313, Springer, Berlin, 1987. · Zbl 0651.34014
[16] Mawhin, J., The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc. 8 (2006), 375-388. doi: · Zbl 1109.34033
[17] Presoto, A.E. and de Paiva, F.O., A Neumann problem of Ambrosetti-Prodi type, J. Fixed Point Theory Appl. 18 (2016), 189-200. doi: · Zbl 1337.35044
[18] Rmz, D., A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differ. Equ. 199 (2004), 96-114. doi: · Zbl 1081.35037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.