×

Theoretical study of a \(\varphi \)-Hilfer fractional differential system in Banach spaces. (English) Zbl 07926147

Summary: In this work, we study the existence of solutions of nonlinear fractional coupled system of \(\varphi \)-Hilfer type in the frame of Banach spaces. We improve a property of a measure of noncompactness in a suitably selected Banach space. Darbo’s fixed point theorem is applied to obtain a new existence result. Finally, the validity of our result is illustrated through an example.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.

References:

[1] Abbas, S., Benchohra, M., and N’Guérékata, G. M., Advanced fractional differential and integral equations, Nova Science Publishers, New York, 2015. · Zbl 1314.34002
[2] Abdo, M., Shah, K., Panchal, S., and Wahash, H., Existence and Ulam stability results of a coupled system for terminal value problems involving \(\psi \) -Hilfer fractional operator. Adv. Difference Equ. 2020(2020), Article no. 316, 21 pp. · Zbl 1485.34015
[3] Aghajani, A. and Sabzali, N., Existence of coupled fixed points via measure of noncompactness and applications. J. Nonlinear Convex Anal.15(2014), no. 5, 941-952. · Zbl 1418.47003
[4] Ahmad, M., Zada, A., and Wang, X., Existence, uniqueness and stability of implicit switched coupled fractional differential equations of \(\psi \) -Hilfer type. Int. J. Nonlinear Sci. Numer. Simul.21(2020), nos. 3-4, 327-337. · Zbl 07336601
[5] Akhmerov, R. R.. Kamenskii, M. I., Potapov, A. S., Rodkina, A. E., and Sadovskii, B. N., Measures of noncompactness and condensing operators, Birkhäuser Verlag, Basel, 1992. · Zbl 0748.47045
[6] Almalahi, M. A. and Panchal, S. K., Some properties of implicit impulsive coupled system via \(\varphi \) -Hilfer fractional operator. Bound. Value Probl. 2021(2021), Article no. 67, 22 pp. · Zbl 1496.34008
[7] Arora, S., Mathur, T., Agarwal, S., Tiwari, K., and Gupta, P., Applications of fractional calculus in computer vision: A survey. Neurocomputing489(2022), 407-428.
[8] Asma, J. F. Gómez-Aguilar, Rahman, G. Ur, and Javed, M., Stability analysis for fractional order implicit \(\varPsi \) -Hilfer differential equations. Math. Methods Appl. Sci. 45(2022), no. 5, 2701-2712.
[9] Atangana, A., Application of fractional calculus to epidemiology. In: Cattani, C., Srivastava, H. M., and Yang, X.-J. (eds.), Fractional dynamics, De Gruyter Open Poland, Warsaw, 2015, pp. 174-190.
[10] Banas, J. and Goebel, K., Measures of noncompactness in Banach spaces, Lecture Notes in Mathematics, 60, Marcel Dekker, New York, 1980. · Zbl 0441.47056
[11] Banas, J. and Goebel, K., Measure of noncompactness in Banach spaces, Lectures Notes in Pure and Applied Mathematics, 50, Marcel Dekker, New York, 1980. · Zbl 0441.47056
[12] Darbo, G., Punti uniti in trasformazioni a codominio non compatto. Rend. Semin. Mat. Univ. Padova24(1955), 84-92. · Zbl 0064.35704
[13] Derbazi, C. and Baitiche, Z., Coupled systems of \(\psi \) -Caputo differential equations with initial conditions in Banach spaces. Mediterr. J. Math.17(2020), 169. · Zbl 1453.34005
[14] Derbazi, C., Baitiche, Z., Benchohra, M., and Graef, J. R., Extremal solutions to a coupled system of nonlinear fractional differential equations with \(\psi \) -Caputo fractional derivatives. J. Math. Appl. 44(2021), 19-34. · Zbl 1502.34006
[15] Diaz, R. and Teruel, C., \(q,k\) -generalized gamma and beta functions. J. Nonlinear Math. Phys.12(2005), 118-134. · Zbl 1075.33010
[16] Fan, Q., Wu, G-C., and Fu, H., A note on function space and boundedness of the general fractional integral in continuous time random walk. J Nonlinear Math. Phys.29(2022), no. 1, 95-102. · Zbl 1486.26009
[17] Furati, K., Kassim, M., and Tatar, N., Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl.64(2012), no. 6, 1616-1626. · Zbl 1268.34013
[18] Kamenskii, M., Obukhovskii, V., and Zecca, P., Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter, Berlin, 2001. · Zbl 0988.34001
[19] Kharade, J. and Kucche, K., On the impulsive implicit \(\varPsi \) -Hilfer fractional differential equations with delay. Math. Methods Appl. Sci.43(2020), no. 4, 1938-1952. · Zbl 1450.34057
[20] Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. · Zbl 1092.45003
[21] Kosztołowicz, T. and Dutkiewicz, A., Subdiffusion equation with Caputo fractional derivative with respect to another function. Phys. Rev. E104(2021), 014118.
[22] Kucche, K. and Mali, A., On the nonlinear \(\psi \) -Hilfer hybrid fractional differential equations. Comput. Appl. Math.41(2022), Article no. 86, no. 3, 23 pp. · Zbl 1499.34064
[23] Kulish, V. and Lage, J., Application of fractional calculus to fluid mechanics. J. Fluids Eng.124(2002), 803-806.
[24] Mali, A., Kucche, K., and Costa Sousa, J., On coupled system of nonlinear \(\psi \) -Hilfer hybrid fractional differential equations. Int. J. Nonlinear Sci. Numer. Simul.24(2023), no. 4, 1425-1445. · Zbl 07715038
[25] Mursaleen, M., Application of measure of noncompactness to infinite systems of differential equations. Can. Math. Bull.56(2013), no. 2, 388-394. · Zbl 1275.47133
[26] Nguyen, M., Generalized weakly singular Gronwall-type inequalities and their applications to fractional differential equations. Rocky Mountain J. Math.51(2021), no. 2, 689-707. · Zbl 1483.26010
[27] Norouzi, F. and N’Guérékata, G., A study of \(\psi \) -Hilfer fractional differential system with application in financial crisis. Chaos Solitons Fractals6(2021), 100056.
[28] Samadi, A., Ntouyas, S. K., and Tariboon, J., Nonlocal coupled system for \(\left(k,\psi \right)\) -Hilfer fractional differential equations. Fractal Fract. 6(2022), no. 5, 234.
[29] Soczkiewicz, E., Application of fractional calculus in the theory of viscoelasticity. Mol. Quantum Acoust.23(2002), 397-404.
[30] Vanterler Da C. Sousa, J. and Capelas De Oliveira, E., On the \(\psi \) -Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul.60(2018), 72-91. · Zbl 1470.26015
[31] Vanterler Da C. Sousa, J. and Capelas De Oliveira, E., Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett.81(2018), 50-56. · Zbl 1475.45020
[32] Vanterler Da C. Sousa, J. and Capelas De Oliveira, E., On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the \(\psi \) -Hilfer operator. J. Fixed Point Theory Appl.20(2018), no. 3, Article no. 96, 21 pp. · Zbl 1398.34023
[33] Vanterler Da C. Sousa, J. and Capelas De Oliveira, E., Leibniz type rule: \( \psi \) -Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul.77(2019), 305-311. · Zbl 1477.26012
[34] Vanterler Da C. Sousa, J., Oliveira, D. S., and Capelas De Oliveira, E., On the existence and stability for noninstantaneous impulsive fractional integrodifferential equation. Math. Methods Appl. Sci.42(2019), no. 4, 1249-1261. · Zbl 1474.45085
[35] Vanterler Da C. Sousa, J., Rodrigues, F. G., and Capelas De Oliveira, E., Stability of the fractional Volterra integro-differential equation by means of \(\psi \) -Hilfer operator. Math. Methods Appl. Sci.42(2019), no. 9, 3033-3043. · Zbl 1428.45010
[36] Zentar, O., Ziane, M., and Khelifa, S., Coupled fractional differential systems with random effects in Banach spaces. Random Oper. Stoch. Equ.29(2021), no. 4, 251-263. · Zbl 1491.34022
[37] Zhou, Y., Wang, J. R., and Zhang, L., Basic theory of fractional differential equations. 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. · Zbl 1360.34003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.