×

A method for constructing quaternary Hermitian self-dual codes and an application to quantum codes. (English) Zbl 07926035

Summary: We introduce quaternary modified four \(\mu\)-circulant codes as a modification of four circulant codes. We give basic properties of quaternary modified four \(\mu\)-circulant Hermitian self-dual codes. We also construct quaternary modified four \(\mu\)-circulant Hermitian self-dual codes having large minimum weights. Two quaternary Hermitian self-dual [56, 28, 16] codes are constructed for the first time. These codes improve the previously known lower bound on the largest minimum weight among all quaternary (linear) [56, 28] codes. In addition, these codes imply the existence of a quantum [[56, 0, 16]] code.

MSC:

94B05 Linear codes (general theory)

References:

[1] Araya, M.; Harada, M., Some restrictions on the weight enumerators of near-extremal ternary self-dual codes and quaternary Hermitian self-dual codes, Des. Codes Cryptogr., 91, 1813-1843, 2023 · Zbl 1522.94108 · doi:10.1007/s10623-022-01172-7
[2] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system I: the user language, J. Symb. Comput., 24, 235-265, 1997 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[3] Calderbank, AR; Rains, ER; Shor, PW; Sloane, NJA, Quantum error correction via codes over \(\rm GF (4)\), IEEE Trans. Inform. Theory, 44, 1369-1387, 1998 · Zbl 0982.94029 · doi:10.1109/18.681315
[4] Conway, JH; Pless, V., Monomials of orders \(7\) and \(11\) cannot be in the group of a \((24,12,10)\) self-dual quaternary code, IEEE Trans. Inform. Theory, 29, 137-140, 1983 · Zbl 0503.94023 · doi:10.1109/TIT.1983.1056617
[5] Conway, JH; Pless, V.; Sloane, NJA, Self-dual codes over \(GF(3)\) and \(GF(4)\) of length not exceeding \(16\), IEEE Trans. Inform. Theory, 25, 312-322, 1979 · Zbl 0401.94025 · doi:10.1109/TIT.1979.1056047
[6] Conway, JH; Sloane, NJA, Sphere Packing, Lattices and Groups, 1999, New York: Springer, New York · doi:10.1007/978-1-4757-6568-7
[7] Georgiou, SD; Lappas, E., Self-dual codes from circulant matrices, Des. Codes Cryptogr., 64, 129-141, 2012 · Zbl 1263.94036 · doi:10.1007/s10623-011-9510-4
[8] Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de/. Accessed 24 Nov 2022.
[9] Grassl, M.; Gulliver, TA, On circulant self-dual codes over small fields, Des. Codes Cryptogr., 52, 57-81, 2009 · Zbl 1237.94123 · doi:10.1007/s10623-009-9267-1
[10] Gulliver, TA, Optimal double circulant self-dual codes over \(\mathbb{F}_4\), IEEE Trans. Inform. Theory, 46, 271-274, 2000 · Zbl 1001.94519 · doi:10.1109/18.817526
[11] Gulliver, TA; Harada, M.; Miyabayashi, H., Optimal double circulant self-dual codes over \(\mathbb{F}_4\) II, Australas. J. Comb., 39, 163-174, 2007 · Zbl 1134.94390
[12] Gulliver, TA; Kim, J-L, Circulant based extremal additive self-dual codes over \(\rm GF (4)\), IEEE Trans. Inform. Theory, 50, 359-366, 2004 · Zbl 1288.94097 · doi:10.1109/TIT.2003.822616
[13] Harada, M., New doubly even self-dual codes having minimum weight \(20\), Adv. Math. Commun., 14, 89-96, 2020 · Zbl 1472.94079 · doi:10.3934/amc.2020007
[14] Harada, M., Self-dual codes over \(\mathbb{F}_5\) and \(s\)-extremal unimodular lattices, Discret. Math., 346, 113126, 2023 · Zbl 1512.94130 · doi:10.1016/j.disc.2022.113126
[15] Harada, M.; Holzmann, W.; Kharaghani, H.; Khorvash, M., Extremal ternary self-dual codes constructed from negacirculant matrices, Gr. Comb., 23, 401-417, 2007 · Zbl 1132.94010 · doi:10.1007/s00373-007-0731-2
[16] Harada M., Lam C., Munemasa A., Tonchev V.D.: Classification of generalized Hadamard matrices \(H(6,3)\) and quaternary Hermitian self-dual codes of length \(18\). Electron. J. Comb. 17, Research Paper 171 (2010). · Zbl 1204.05032
[17] Harada, M.; Munemasa, A., Classification of quaternary Hermitian self-dual codes of length \(20\), IEEE Trans. Inform. Theory, 57, 3758-3762, 2011 · Zbl 1365.94514 · doi:10.1109/TIT.2011.2134330
[18] Huffman, WC, On extremal self-dual quaternary codes of lengths \(18\) to \(28 I\), IEEE Trans. Inform. Theory, 36, 651-660, 1990 · Zbl 0703.94013 · doi:10.1109/18.54885
[19] Huffman, WC, On extremal self-dual quaternary codes of lengths \(18\) to \(28\) II, IEEE Trans. Inform. Theory, 37, 1206-1216, 1991 · Zbl 0733.94017 · doi:10.1109/18.86976
[20] Huffman, WC, On the classification and enumeration of self-dual codes, Finite Fields Appl., 11, 451-490, 2005 · Zbl 1087.94023 · doi:10.1016/j.ffa.2005.05.012
[21] Kim, HJ; Lee, Y., Classification of extremal self-dual quaternary codes of lengths \(30\) and \(32\), IEEE Trans. Inform. Theory, 59, 2352-2358, 2013 · Zbl 1364.94739 · doi:10.1109/TIT.2012.2231955
[22] Kim, J-L, New self-dual codes over \(\rm GF (4)\) with the highest known minimum weights, IEEE Trans. Inform. Theory, 47, 1575-1580, 2001 · Zbl 0997.94023 · doi:10.1109/18.923739
[23] Lam, CWH; Pless, V., There is no \((24,12,10)\) self-dual quaternary code, IEEE Trans. Inform. Theory, 36, 1153-1156, 1990 · Zbl 0738.94022 · doi:10.1109/18.57217
[24] MacWilliams, FJ; Mallows, CL; Sloane, NJA, Generalizations of Gleason’s theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 18, 794-805, 1972 · Zbl 0248.94013 · doi:10.1109/TIT.1972.1054898
[25] MacWilliams, FJ; Odlyzko, AM; Sloane, NJA; Ward, HN, Self-dual codes over \(\rm GF (4)\), J. Comb. Theory Ser. A, 25, 288-318, 1978 · Zbl 0397.94013 · doi:10.1016/0097-3165(78)90021-3
[26] Rains, E.; Sloane, NJA; Pless, VS; Huffman, WC, Self-dual codes, Handbook of Coding Theory, 177-294, 1998, Amsterdam: Elsevier, Amsterdam · Zbl 0936.94017
[27] Roberts A.M.: Quaternary Hermitian self-dual codes of lengths \(26, 32, 36, 38\) and \(40\) from modifications of well-known circulant constructions. Appl. Algebra Eng. Commun. Comput. (to appear). doi:10.1007/s00200-022-00589-w.
[28] Wolfram Research, Inc., Mathematica, Version 12.3.1. https://www.wolfram.com/mathematica.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.