×

Regular and exploratory resource extraction models considering sustainability. (English) Zbl 07925739

Summary: We formulate an optimal control problem of resource extraction, where a decision maker with sustainability concern dynamically controls the extraction rate. We assume harvesting to increase profit and incur a risk of resource depletion and aim to resolve sustainability concerns. The optimality equation of the control problem is the Hamilton-Jacobi-Bellman (HJB) equation with an unbounded Hamiltonian. A regularization technique to bound the Hamiltonian is proposed to prove the existence of a unique viscosity solution to both the modified and original HJB equations. We also investigate a relaxed control case, an exploratory control counterpart of our mathematical model, with the control variable belonging to a set of probability measures. Convergent, fully implicit finite difference methods to compute the viscosity solutions to the HJB equations are presented as well. These numerical methods exploit the characteristic direction of the Hamiltonians to avoid using any matrix inversions. Finally, a demonstrative application example of the proposed model to a fishery management problem is presented.

MSC:

91Gxx Actuarial science and mathematical finance
91Axx Game theory
35Fxx General first-order partial differential equations and systems of first-order partial differential equations
Full Text: DOI

References:

[1] Salazar, J. Z.; Kwakkel, J. H.; Witvliet, M., Evaluating the choice of radial basis functions in multiobjective optimal control applications, Environ Model Softw, 171, Article 105889 pp., 2024
[2] Nkuiya, B.; Diekert, F., Stochastic growth and regime shift risk in renewable resource management, Ecol Econ, 208, Article 107793 pp., 2023
[3] Alvarez E, L. H.R.; Sillanpää, W., Optimal stopping and impulse control in the presence of an anticipated regime switch, Math Methods Oper Res, 98, 205-230, 2023 · Zbl 1534.49025
[4] Ouoba, Y., Testing the necessary conditions for sustainability in the mining sector in Burkina Faso, Miner Econ, 36, 1-12, 2023
[5] Nadarajah, S.; Secomandi, N., A review of the operations literature on real options in energy, Eur J Oper Res, 309, 469-487, 2023 · Zbl 07709215
[6] Strulik, H.; Werner, K., Renewable resource use with imperfect self-control, J Econ Behav Organ, 212, 778-795, 2023
[7] Koundouri, P.; Papayiannis, G. I.; Yannacopoulos, A. N., Optimal control approaches to sustainability under uncertainty, SDGs in the European region, implementing the UN sustainable development goals-regional perspectives, 29-58, 2023, Springer: Springer Cham, In: W. Leal Filho, M.A.P. Dinis, S. Moggi, E. Price, A. Hope (Eds.)
[8] Mutakaya, M. A.; Mhlanga, F. J., Optimal production and regulation of gold mining: a stochastic differential game approach, J Ind Manag Optim, 20, 1458-1482, 2024 · Zbl 07799973
[9] Bretschger, L.; Valente, S., Effective policy design for a sustainable economy, Eur Econ Rev, Article 104462 pp., 2023
[10] Fleming, W. H.; Soner, H. M., Controlled Markov processes and viscosity solutions, 2006, Springer: Springer New York · Zbl 1105.60005
[11] Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second order partial differential equations, Bull Am Math Soc, 27, 1-67, 1992 · Zbl 0755.35015
[12] Pham, H., Continuous-time stochastic control and optimization with financial applications, 2009, Springer: Springer Berlin, Heidelberg · Zbl 1165.93039
[13] Cunis, T.; Kolmanovsky, I., Viability, viscosity, and storage functions in model-predictive control with terminal constraints, Automatica, 131, Article 109748 pp., 2021 · Zbl 1478.93165
[14] Li, H., Estimate of the domain of attraction for interconnected systems, Commun Nonlinear Sci Numer Simul, 99, Article 105823 pp., 2021 · Zbl 1464.93065
[15] Nolasco, E.; Vassiliadis, V. S.; Kähm, W.; Adloor, S. D.; Al Ismaili, R.; Conejeros, R.; Espaas, T.; Gangadharan, N.; Mappas, V.; Scott, F.; Zhang, Q., Optimal control in chemical engineering: past, present and future, Comput Chem Eng, 155, Article 107528 pp., 2021
[16] Bardi, M.; Da Lio, F., On the Bellman equation for some unbounded control problems, Nonlinear Differ Equ Appl NoDEA, 4, 491-510, 1997 · Zbl 0894.49017
[17] Koutsimpela, A.; Loulakis, M., On the optimally controlled stochastic shallow lake, Int J Control, 1-13, 2023
[18] Cieślak, T.; Siemianowski, J.; Święch, A., Viscosity solutions to an initial value problem for a Hamilton-Jacobi equation with a degenerate Hamiltonian occurring in the dynamics of peakons, Nonlinear Anal, 204, Article 112204 pp., 2021 · Zbl 1458.35128
[19] Cieślak, T.; Siemianowski, J., Existence of viscosity solutions with the optimal regularity of a two-peakon Hamilton-Jacobi equation, J Hyperbolic Differ Equ, 18, 493-510, 2021 · Zbl 1480.35099
[20] Cacace, S.; Lai, A. C.; Loreti, P., A dynamic programming approach for controlled fractional SIS models, Nonlinear Differ Equ Appl NoDEA, 30, 20, 2023 · Zbl 07639050
[21] Kim, J.; Yang, I., Maximum entropy optimal control of continuous-time dynamical systems, IEEE Trans Autom Control, 68, 2018-2033, 2022 · Zbl 07742229
[22] Tang, W.; Zhang, Y. P.; Zhou, X. Y., Exploratory HJB equations and their convergence, SIAM J Control Optim, 60, 3191-3216, 2022 · Zbl 1501.35132
[23] Wu, B.; Li, L., Reinforcement learning for continuous-time mean-variance portfolio selection in a regime-switching market, J Econ Dyn Control, 158, Article 104787 pp., 2024 · Zbl 07865861
[24] Jia, Y.; Zhou, X. Y., q-Learning in continuous time, J Mach Learn Res, 24, 1-61, 2023
[25] Gao, X.; Xu, Z. Q.; Zhou, X. Y., State-dependent temperature control for Langevin diffusions, SIAM J Control Optim, 60, 1250-1268, 2022 · Zbl 1493.93057
[26] Han, X.; Wang, R.; Zhou, X. Y., Choquet regularization for continuous-time reinforcement learning, SIAM J Control Optim, 61, 2777-2801, 2023 · Zbl 07748432
[27] Yoshioka, H., Optimal harvesting policy for biological resources with uncertain heterogeneity for application in fisheries management, Nat Resour Model, e12394, 2024 · Zbl 1542.91302
[28] Yu, Z.; Guo, X.; Xia, L., Zero-sum semi-Markov games with state-action-dependent discount factors, Discret Event Dyn Syst, 32, 545-571, 2022 · Zbl 1526.91002
[29] Jasso-Fuentes, H.; López-Martínez, R. R.; Minjárez-Sosa, J. A., Some advances on constrained Markov decision processes in Borel spaces with random state-dependent discount factors, Optimization, 73, 925-941, 2024 · Zbl 1533.93844
[30] Motta, M., Viscosity solutions of HJB equations with unbounded data and characteristic points, Appl Math Optim, 49, 1-26, 2004 · Zbl 1052.49027
[31] Lu, X.; Yin, G.; Guo, X., Infinite horizon controlled diffusions with randomly varying and state-dependent discount cost rates, J Optim Theory Appl, 172, 535-553, 2017 · Zbl 1365.93546
[32] Rodosthenous, N.; Zhang, H., When to sell an asset amid anxiety about drawdowns, Math Financ, 30, 1422-1460, 2020 · Zbl 1508.91585
[33] Pascucci, A., PDE and martingale methods in option pricing, 2011, Springer: Springer Milano · Zbl 1214.91002
[34] Colaneri, K.; Frey, R., Classical solutions of the backward PIDE for Markov modulated marked point processes and applications to CAT bonds, Insur Math Econ, 101, 498-507, 2021 · Zbl 1475.91353
[35] Yoshioka, H.; Tsujimura, M.; Yoshioka, Y., Numerical analysis of an extended mean field game for harvesting common fishery resource, Comput Math Appl, 165, 88-105, 2024 · Zbl 07859644
[36] Carrillo, J. A.; Gómez-Castro, D.; Vázquez, J. L., Vortex formation for a non-local interaction model with Newtonian repulsion and superlinear mobility, Adv Nonlinear Anal, 11, 937-967, 2022, a · Zbl 1484.35283
[37] Carrillo, J. A.; Gómez-Castro, D.; Vázquez, J. L., A fast regularisation of a Newtonian vortex equation, Annales de l’Institut Henri Poincare (C) analyse non lineaire, 39, 2022, EMS Press · Zbl 1510.35180
[38] El Hajj, A.; Oussaily, A., Convergent scheme for a non-local transport system modeling dislocations dynamics, J Comput Appl Math, 448, Article 115929 pp., 2024 · Zbl 07878283
[39] Hozman, J.; Tichý, T.; Dvořáčková, H., Valuation of mining projects under dynamic model framework, Ann Oper Res, 2023, published online
[40] Barles, G.; Souganidis, P. E., Convergence of approximation schemes for fully nonlinear second order equations, Asymptot Anal, 4, 271-283, 1991 · Zbl 0729.65077
[41] Lu, X.; Zhu, S. P.; Yan, D., Nonlinear PDE model for European options with transaction costs under Heston stochastic volatility, Commun Nonlinear Sci Numer Simul, 103, Article 105986 pp., 2021 · Zbl 1475.91360
[42] Rashkov, P., A model for a vector-borne disease with control based on mosquito repellents: a viability analysis, J Math Anal Appl, 498, Article 124958 pp., 2021 · Zbl 1460.92220
[43] Yan, D.; Lin, S.; Hu, Z.; Yang, B. Z., Pricing American options with stochastic volatility and small nonlinear price impact: a PDE approach, Chaos Solitons Fractals, 163, Article 112581 pp., 2022
[44] Liu, H.; Qian, L., Alternating evolution methods for static Hamilton-Jacobi equations, J Comput Appl Math, 351, 270-289, 2019 · Zbl 1448.65193
[45] Mu, X.; Zhang, C.; Xu, B.; Ji, Y.; Xue, Y.; Ren, Y., Accounting for the fish condition in assessing the reproductivity of a marine eel to achieve fishery sustainability, Ecol Ind, 130, Article 108116 pp., 2021
[46] Oglend, A.; Asche, F.; Martin, H., Rent formation and distortions due to quotas in biological production processes, Resour Energy Econ, Article 101438 pp., 2024
[47] Barles, G., An introduction to the theory of viscosity solutions for first-order Hamilton-Jacobi equations and applications, Hamilton-Jacobi equations: approximations, numerical analysis and applications. lecture notes in mathematics, 2074, 2013, Springer: Springer Berlin, Heidelberg · Zbl 1269.49043
[48] Huang, C.; Song, H.; Yang, J.; Zhou, B., Error analysis of finite difference scheme for American option pricing under regime-switching with jumps, J Comput Appl Math, 437, Article 115484 pp., 2024 · Zbl 1528.91078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.