×

On shape and topological optimization problems with constraints Helmholtz equation and spectral problems. (English) Zbl 07925729

Summary: Coastal erosion describes the displacement of sand caused by the movement induced by tides, waves or currents. Some of its wave phenomena are modelled by Helmholtz-type equations. Our purposes, in this paper are, first, to study optimal shapes obstacles to mitigate sand transport under the constraint of the Helmholtz equation. And the second side of this work is related to Dirichlet and Neumann spectral problems. We show the existence of optimal shapes in a general admissible set of quasi open sets. And necessary optimality conditions of first order are given in a regular framework using both shape and topological optimization. Some numerical simulations are given to represent optimal domains.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
74Pxx Optimization problems in solid mechanics
35Jxx Elliptic equations and elliptic systems

References:

[1] Berkhoff, J. C.W., Computation of combined refraction-diffraction, (Asce, Proc. 13th coastal eng. conf, 1972), 471-490
[2] Berkhoff, J. C.W., Mathematical models for simple harmonic linear water waves, (Wave refraction and diffraction, 1976, Publ. No. 163 Delft Hydraulics Laboratory, Delft, The Netherlands)
[3] Isebe, D.; Azerad, P.; Mohammadi, B.; Bouchette, F., Optimal shape design of defense structures for minimizing short wave impact, Coast Eng, 55, 35-46, 2008
[4] Panchang, V. G.; Cushman-Roisin, B.; Pearce, B. R., Combined refraction-diffraction of short-waves in Large Coastal Regions, Coast Eng, 12, 133-156, 1988
[5] Mitropoulou, C. C.; Fourkiotis, Y.; Lagaros, N. D.; Karlaftis, M. G., Evolution strategies-based metaheuristics in structural design optimization, (Metaheuristic applications in structures and infrastructures, 2013, Elsevier), 79-102
[6] Meske, R.; Sauter, J.; Schnack, E., Nonparametric gradient-less shape optimization for real-world applications. English, Struct Multidiscip Optim, 30, 3, 201-218, 2005 · Zbl 1243.74145
[7] Murat, F.; Simon, J., (Études de problèmes d’optimal design. Études de problèmes d’optimal design, Lecture notes in comput. sci., vol. 41, 1976, Springer-Verlag: Springer-Verlag Berlin), 54-62 · Zbl 0334.49013
[8] Murat, F.; Simon, J., Sur le contrôle par un domaine géométrique, 1976, Université Pierre et Marie Curie: Université Pierre et Marie Curie Paris, [Thèse d’état]
[9] Pironneau, O., Optimal shape design for elliptic systems, (System modeling and optimization, 1982, Springer: Springer Berlin, Heidelberg) · Zbl 0496.93029
[10] Mohammadi, B.; Pironneau, O., Shape optimization in fluid mechanics, Annu Rev Fluid Mech, 255-279, 2004 · Zbl 1076.76020
[11] Bucur, D., How to prove existence in shape optimization, Arch Ration Mech Anal, 122, 183-195, 1993 · Zbl 0811.49028
[12] Bucur, D.; Buttazzo, G., (Variational Methods in Some Shape Optimization Problems. Variational Methods in Some Shape Optimization Problems, Progress in nonlinear differential equations, vol. 65, 2005, Birkhauser Verlag: Birkhauser Verlag Basel) · Zbl 1117.49001
[13] Bucur, D.; Buttazzo, G.; Henrot, A., Existence results for some optimal partition problems, Adv Math Sci Appl, 8, 571-579, 1998 · Zbl 0915.49006
[14] Sokolowski, J.; Zolesio, J. P., (Introduction to shape optimization: Shape sensitivity analysis. Introduction to shape optimization: Shape sensitivity analysis, Springer series in computational mathematics, vol. 10, 1992, Springer: Springer Berlin) · Zbl 0761.73003
[15] Masmoudi M. The topological asymptotic. In: Glowinski R, Kawarada H, Periaux J, editors. Computational methods for control applications. GAKUTO internat. ser. math. sci. appl., vol. 16, Tokyo, Japan; 2001, p. 53-72.
[16] Samet, B., The topological asymptotic analysis for the Maxwell equations and applications, (Mathematics [math], 2004, Université Paul Sabatier - Toulouse III), English
[17] Idier, D., Dunes et Bancs de Sables du Plateau Continental: Observations in-situ et Modelisation Numerique, 2002, INP Toulouse: INP Toulouse France, [Ph.D. thesis]
[18] Faye, I.; Frénod, E.; Seck, D., Singularly degenerated parabolic equations and applications to seabed morphodynamics in tided environment, Discrete Contin Dyn Syst A, 29, 3, 2011 · Zbl 1217.35016
[19] Ito, K.; Kunisch, K.; Peichl, G. H., Variational approach to shape derivatives, ESAIM, Control Optim Calc Var, 14, 3, 517-539, 2008 · Zbl 1357.49148
[20] Kleemann, N., Shape derivatives for diffraction by non-smooth periodic interfaces, 2011
[21] Laurain, A.; Sturm, K., Distributed shape derivative via averaged adjoint method and applications, ESAIM: M2AN, 50, 4, 1241-1267, 2016 · Zbl 1347.49070
[22] Samet, B.; Amstuz, S.; Masmoudi, M., The topologicical asymptotic for the Helmholtz equation, SIAM J Control Optim, 42, 5, 1523-1544, 2003 · Zbl 1051.49029
[23] Amstutz, S., Aspects théoriques et numériques en optimisation de forme topologique, 2003, de l’Institut National des Sciences Appliquées de Toulouse, [Thèse de doctorat]
[24] Amstutz, S., The topological asymptotic for the Helmholtz equation: insertion of a hole, a crack and a dielectric object, Rapport MIP, 03-05, 2003
[25] Novotny, A. A.; Sokolowski, J.; Zochowski, A., (Applications of the topological derivative method. Applications of the topological derivative method, Studies in systems, decision and control, vol. 188, 2019, Springer) · Zbl 1460.74001
[26] Evans, L. C., (Partial differential equations. Partial differential equations, Graduate studies in mathematics, vol. 19, 1998, American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0902.35002
[27] Buttazzo, G.; Dal Maso, G., An existence result for a class of shape optimization problems, Arch Ration Mech Anal, 122, 183-195, 1993 · Zbl 0811.49028
[28] Buttazzo, G.; Shrivastava, H., Optimal shapes for general integral functionals, 2018, arXiv:1803.09310v1 [math.OC]
[29] Velichkov, B., Existence and regularity results for some shape optimization problems, 2013, Scuola Normale Superiore di Pisa and l’Université de Grenoble, [PHD thesis]
[30] Delfour, M.; Zolésio, J. P., Shapes and geometries, (Analysis, differential calculus and optimization. Analysis, differential calculus and optimization, Advances in design and control, 2001, SIAM: SIAM Philadelpia, PA) · Zbl 1002.49029
[31] Henrot, A.; Pierre, M., Variation et optimisation de formes, (Une analyse géométrique. Une analyse géométrique, Mathématiques et applications, vol. 48, 2005, Springer: Springer Berlin) · Zbl 1098.49001
[32] Simon, J., Differentiation with respect to the domain in boundary value problems, Numer Funct Optim, 2, 7-8, 649-687, 1980 · Zbl 0471.35077
[33] Hadamard, J., Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées, Mém savants étrangers, 33, 515-629, 1907
[34] Henrot, A., Extremum problems for eigenvalues of elliptic operators, (Frontiers in mathematics, 2006, Birkhauser Verlag: Birkhauser Verlag Basel) · Zbl 1109.35081
[35] Henrot, A., Shape optimization and spectral theory, x + 464, 2017, De Gruyter: De Gruyter Berlin, hbk; 978-3-11-055088-7/ebook. x, 464 p. open access (2017) · Zbl 1369.49004
[36] Caubet, F.; Dambrine, M.; Mashadevan, R., Shape derivatives of eigenvalue functionals, (Part ones scalar problems, 2020), hal-02511124
[37] Berger, A., (Optimisation du spectre du Laplacien avec conditions de Dirichlet et Neumann dans \(\mathbb{R}^2 e t \mathbb{R}^3\), Equations aux dérivées partielles [math.AP], 2015, Université de Neuchatel: Université de Neuchatel Suisse), Francais MNT: 2015GREAM036. tel-01266486
[38] Rousselet, B., Shape design sensitivity of a membrane, J Optim Theory Appl, 40, 595-623, 1983 · Zbl 0497.73097
[39] Friedman, A.; Vogelius, M. S., Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch Ration Mech Anal, 105, 4, 299-326, 1989 · Zbl 0684.35087
[40] Schumacher, A., Topologieoptimierung von bauteilstrukturen unter verwendung von lochpositionierungkriterien, 1995, Universitat-Gesamthochschule-Siegen: Universitat-Gesamthochschule-Siegen Siegen-Germany, [Ph.D. thesis]
[41] Novotny, A. A.; Sokolowski, J., Topological derivative in shape optimization, (Interaction of mechanics and mathematics, 2013, Springer: Springer Heidelberg, New York) · Zbl 1276.35002
[42] Nazarov, S. A.; Sokolowski, J., Asymptotics Analysis of shape functional, J Math Pures Appl, 82, 125-196, 2003 · Zbl 1031.35020
[43] Schulz, V. H.; Siebenborn, M.; Welker, K., Efficient pde constrained shape optimization based on Steklov-Poincaré-type metrics, SIAM J Optim, 26, 4, 2800-2819, 2016 · Zbl 1354.49095
[44] Langtangen, H. P.; Logg, A., Solving PDEs in python : the fEniCS tutorial i, 2017, Springer Nature · Zbl 1376.65144
[45] Schlegel, L.; Schulz, V., Shape optimization for the mitigation of coastal erosion via the Helmholtz equation, 2021, arXiv preprint arXiv:2107.10038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.