×

Quasi-maximum likelihood estimation and penalized estimation under non-standard conditions. (English) Zbl 07925556

Summary: The purpose of this article is to develop a general parametric estimation theory that allows the derivation of the limit distribution of estimators in non-regular models where the true parameter value may lie on the boundary of the parameter space or where even identifiability fails. For that, we propose a more general local approximation of the parameter space (at the true value) than previous studies. This estimation theory is comprehensive in that it can handle penalized estimation as well as quasi-maximum likelihood estimation (in the ergodic or non-ergodic statistics) under such non-regular models. In penalized estimation, depending on the boundary constraint, even the concave Bridge estimator does not necessarily give selection consistency. Therefore, we describe some sufficient condition for selection consistency, precisely evaluating the balance between the boundary constraint and the form of the penalty. An example is penalized MLE of variance components of random effects in linear mixed models.

MSC:

62-XX Statistics

References:

[1] Adams, RA; Fournier, J., Cone conditions and properties of sobolev spaces, Journal of Mathematical Analysis and Applications, 61, 3, 713-734, 1977 · Zbl 0385.46024 · doi:10.1016/0022-247X(77)90173-1
[2] Andrews, DW, Estimation when a parameter is on a boundary, Econometrica, 67, 6, 1341-1383, 1999 · Zbl 1056.62507 · doi:10.1111/1468-0262.00082
[3] Bondell, HD; Krishna, A.; Ghosh, SK, Joint variable selection for fixed and random effects in linear mixed-effects models, Biometrics, 66, 4, 1069-1077, 2010 · Zbl 1233.62134 · doi:10.1111/j.1541-0420.2010.01391.x
[4] Chernoff, H., On the distribution of the likelihood ratio, The Annals of Mathematical Statistics, 25, 573-578, 1954 · Zbl 0056.37102 · doi:10.1214/aoms/1177728725
[5] De Gregorio, A.; Iacus, SM, Adaptive lasso-type estimation for multivariate diffusion processes, Econometric Theory, 28, 4, 838-860, 2012 · Zbl 1419.62170 · doi:10.1017/S0266466611000806
[6] Fu, W.; Knight, K., Asymptotics for lasso-type estimators, The Annals of statistics, 28, 5, 1356-1378, 2000 · Zbl 1105.62357 · doi:10.1214/aos/1015957397
[7] Frank, L. E., Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35(2), 109-135. · Zbl 0775.62288
[8] Gaïffas, S.; Matulewicz, G., Sparse inference of the drift of a high-dimensional ornstein-uhlenbeck process, Journal of Multivariate Analysis, 169, 1-20, 2019 · Zbl 1404.60049 · doi:10.1016/j.jmva.2018.08.005
[9] Genon-Catalot, V.; Jacod, J., On the estimation of the diffusion coefficient for multi-dimensional diffusion processes, Annales de l’IHP Probabilités et statistiques, 29, 119-151, 1993 · Zbl 0770.62070
[10] Ibragimov, IA; Khas’minskii, RZ, The asymptotic behavior of statistical estimators in the smooth case. I. Study of the likelihood ratio, Theory of Probability and its Applications, 17, 445-462, 1973 · Zbl 0273.62019 · doi:10.1137/1117054
[11] Ibragimov, IA; Khas’minskii, RZ, Statistical estimation: Asymptotic theory, 1981, New York: Springer, New York · Zbl 0467.62026 · doi:10.1007/978-1-4899-0027-2
[12] Ibrahim, JG; Zhu, H.; Garcia, RI; Guo, R., Fixed and random effects selection in mixed effects models, Biometrics, 67, 2, 495-503, 2011 · Zbl 1217.62171 · doi:10.1111/j.1541-0420.2010.01463.x
[13] Jacod, J. (1997). On continuous conditional gaussian martingales and stable convergence in law. In J. Azéma, M. Emery, M. Yor (Eds.), Séminaire de Probabilités XXXI. Lecture Notes in Mathematics (Vol. 1655, pp. 232-246). Berlin: Springer. · Zbl 0884.60038
[14] Jorgensen, B., Statistical properties of the generalized inverse Gaussian distribution, 1982, New York: Springer, New York · Zbl 0486.62022 · doi:10.1007/978-1-4612-5698-4
[15] Kinoshita, Y., Yoshida, N. (2019). Penalized quasi likelihood estimation for variable selection. arXiv preprint arXiv:1910.12871.
[16] Masuda, H.; Shimizu, Y., Moment convergence in regularized estimation under multiple and mixed-rates asymptotics, Mathematical Methods of Statistics, 26, 2, 81-110, 2017 · Zbl 1380.62082 · doi:10.3103/S1066530717020016
[17] Müller, S.; Scealy, JL; Welsh, AH, Model selection in linear mixed models, Statistical Science, 28, 2, 135-167, 2013 · Zbl 1331.62364 · doi:10.1214/12-STS410
[18] Self, SG; Liang, KY, Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions, Journal of the American Statistical Association, 82, 398, 605-610, 1987 · Zbl 0639.62020 · doi:10.1080/01621459.1987.10478472
[19] Tibshirani, R., Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), 58, 1, 267-288, 1996 · Zbl 0850.62538 · doi:10.1111/j.2517-6161.1996.tb02080.x
[20] Uchida, M.; Yoshida, N., Quasi likelihood analysis of volatility and nondegeneracy of statistical random field, Stochastic Processes and their Applications, 123, 7, 2851-2876, 2013 · Zbl 1284.62539 · doi:10.1016/j.spa.2013.04.008
[21] Umezu, Y.; Shimizu, Y.; Masuda, H.; Ninomiya, Y., Aic for the non-concave penalized likelihood method, Annals of the Institute of Statistical Mathematics, 71, 2, 247-274, 2019 · Zbl 1418.62279 · doi:10.1007/s10463-018-0649-x
[22] Wong, KY; Goldberg, Y.; Fine, JP, Oracle estimation of parametric models under boundary constraints, Biometrics, 72, 4, 1173-1183, 2016 · Zbl 1390.62318 · doi:10.1111/biom.12520
[23] Yoshida, J., Yoshida, N. (2023). Penalized estimation for non-identifiable models. arXiv preprint arXiv:2301.09131.
[24] Yoshida, N. (2011). Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Annals of the Institute of Statistical Mathematics,63(3), 431-479. · Zbl 1333.62224
[25] Zou, H., The adaptive lasso and its oracle properties, Journal of the American statistical association, 101, 476, 1418-1429, 2006 · Zbl 1171.62326 · doi:10.1198/016214506000000735
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.