×

Theoretical and numerical studies of fractional Volterra-Fredholm integro-differential equations in Banach space. (English) Zbl 07925493

Summary: This paper examines the theoretical, analytical, and approximate solutions of the Caputo fractional Volterra-Fredholm integro-differential equations (FVFIDEs). Utilizing Schaefer’s fixed-point theorem, the Banach contraction theorem and the Arzelà-Ascoli theorem, we establish some conditions that guarantee the existence and uniqueness of the solution. Furthermore, the stability of the solution is proved using the Hyers-Ulam stability and Gronwall-Bellman’s inequality. Additionally, the Laplace Adomian decomposition method (LADM) is employed to obtain the approximate solutions for both linear and non-linear FVFIDEs. The method’s efficiency is demonstrated through some numerical examples.

MSC:

65R20 Numerical methods for integral equations
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] A. Abdeldaim & M. Yakout (2011). On some new integral inequalities of Gronwall-Bellman-Pachpatte type. Applied Mathematics and Computation, 217(20), 7887-7899. https://doi.org/ 10.1016/j.amc.2011.02.093. · Zbl 1220.26012 · doi:10.1016/j.amc.2011.02.093
[2] S. M. Al-Zahrani, F. E. I. Elsmih, K. S. Al-Zahrani & S. Saber (2022). A fractional order SITR model for forecasting of transmission of COVID-19: Sensitivity statistical analysis. Malaysian Journal of Mathematical Sciences, 16(3), 517-536. https://doi.org/10.47836/mjms.16.3.08. · Zbl 1533.92189 · doi:10.47836/mjms.16.3.08
[3] M. Alam & D. Shah (2021). Hyers-Ulam stability of coupled implicit fractional integro-differential equations with Riemann-Liouville derivatives. Chaos, Solitons & Fractals, 150, 111122. https://doi.org/10.1016/j.chaos.2021.111122. · Zbl 1498.34207 · doi:10.1016/j.chaos.2021.111122
[4] M. R. Ali, A. R. Hadhoud & H. M. Srivastava (2019). Solution of fractional Volterra-Fredholm integro-differential equations under mixed boundary conditions by using the HOBW method. Advances in Difference Equations, 2019, 1-14. https://doi.org/10.1186/ s13662-019-2044-1. · Zbl 1459.65238 · doi:10.1186/s13662-019-2044-1
[5] H. Alrabaiah, M. Jamil, K. Shah & R. A. Khan (2020). Existence theory and semi-analytical study of non-linear Volterra fractional integro-differential equations. Alexandria Engineering Journal, 59(6), 4677-4686. https://doi.org/10.1016/j.aej.2020.08.025. · doi:10.1016/j.aej.2020.08.025
[6] R. Amin, H. Ahmad, K. Shah, M. B. Hafeez & W. Sumelka (2021). Theoretical and computa-tional analysis of nonlinear fractional integro-differential equations via collocation method. Chaos, Solitons & Fractals, 151, 111252. https://doi.org/10.1016/j.chaos.2021.111252. · Zbl 1498.34208 · doi:10.1016/j.chaos.2021.111252
[7] R. Amin, K. Shah, M. Asif, I. Khan & F. Ullah (2021). An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. Journal of Computational and Applied Mathematics, 381, 113028. https://doi.org/10.1016/j.cam.2020.113028. · Zbl 1451.65230 · doi:10.1016/j.cam.2020.113028
[8] S. Asawasamrit, W. Nithiarayaphaks, S. K. Ntouyas & J. Tariboon (2019). Existence and stability analysis for fractional differential equations with mixed nonlocal conditions. Math-ematics, 7(2), 117. https://doi.org/10.3390/math7020117. · doi:10.3390/math7020117
[9] D. Baleanu, S. M. Aydogn, H. Mohammadi & S. Rezapour (2020). On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian de-composition method. Alexandria Engineering Journal, 59(5), 3029-3039. https://doi.org/10. 1016/j.aej.2020.05.007. · doi:10.1016/j.aej.2020.05.007
[10] M. Benchohra, E. Karapınar, J. E. Lazreg & A. Salim (2023). Implicit fractional differential equations. In Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, pp. 35-76. Springer Cham, Switzerland.
[11] Y. Cherruault (1989). Convergence of Adomian’s method. Kybernetes, 18(2), 31-38. https: //doi.org/10.1108/eb005812. · Zbl 0697.65051 · doi:10.1108/eb005812
[12] P. Das, S. Rana & H. Ramos (2019). Homotopy perturbation method for solving Caputo-type fractional-order Volterra-Fredholm integro-differential equations. Computational and Mathe-matical Methods, 1(5), e1047. https://doi.org/10.1002/cmm4.1047. · doi:10.1002/cmm4.1047
[13] H. Dehestani, Y. Ordokhani & M. Razzaghi (2021). Combination of Lucas wavelets with Legendre-Gauss quadrature for fractional Fredholm-Volterra integro-differential equations. Journal of Computational and Applied Mathematics, 382, 113070. https://doi.org/10.1016/j.cam. 2020.113070. · Zbl 1452.65403 · doi:10.1016/j.cam.2020.113070
[14] H. Du, Z. Chen & T. Yang (2020). A stable least residue method in reproducing kernel space for solving a nonlinear fractional integro-differential equation with a weakly singular kernel. Applied Numerical Mathematics, 157, 210-222. https://doi.org/10.1016/j.apnum.2020.06.004. · Zbl 1453.65449 · doi:10.1016/j.apnum.2020.06.004
[15] O. A. Efut, U. U. Effiong & I. D. Ikechi (2021). A robust iterative approach for solving non-linear Volterra delay integro-differential equations. Ural Mathematical Journal, 7(2), 59-85. https://doi.org/10.15826/umj.2021.2.005. · Zbl 07504263 · doi:10.15826/umj.2021.2.005
[16] Z. Eshkuvatov, Z. Laadjal & S. Ismail (2021). Numerical treatment of nonlinear mixed Volterra-Fredholm integro-differential equations of fractional order. In AIP 2021, pp. 63-67. AIP Publishing, Uzbekistan.
[17] M. F. Faraloya, S. Shafie, F. M. Siam, R. Mahmud & S. O. Ajadi (2021). Numerical simulation and optimization of radiotherapy cancer treatments using the Caputo fractional derivative. Malaysian Journal of Mathematical Sciences, 15(2), 161-187. · Zbl 1467.92091
[18] A. Hamoud (2020). Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro differential equations. Advances in the Theory of Nonlinear Analysis and its Application, 4(4), 321-331. https://doi.org/10.31197/atnaa.799854. · doi:10.31197/atnaa.799854
[19] A. A. Hamoud & K. P. Ghadle (2019). Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations. Journal of Applied and Computational Mechanics, 5(1), 58-69. doi:10.22055/jacm.2018.25397.1259. · doi:10.22055/jacm.2018.25397.1259
[20] F. Haq, K. Shah, A. Khan, M. Shahzad & G. ur Rahman (2020). Numerical solution of frac-tional order epidemic model of a vector born disease by Laplace Adomian decomposition method. Punjab University Journal of Mathematics, 49(2), 13-22. · Zbl 1382.65228
[21] S. Hussain, M. Sarwar, N. Mlaiki & F. Azmi (2023). Existence and controllability of fractional semilinear mixed Volterra-Fredholm integro differential equation. Alexandria Engineering Journal, 73, 259-267. https://doi.org/10.1016/j.aej.2023.04.029. · doi:10.1016/j.aej.2023.04.029
[22] F. M. Ismaael (2023). On a new class of impulsive η-Hilfer fractional Volterra-Fredholm integro-differential equations. Malaysian Journal of Mathematical Sciences, 17(4), 691-704.
[23] B. D. Karande (2013). Fractional order functional integro-differential equation in Banach algebras. Malaysian Journal of Mathematical Sciences, 8(S), 1-16.
[24] S. Khaldi, R. Mecheraoui & A. Mukheimer (2020). A nonlinear fractional problem with mixed Volterra-Fredholm integro-differential equation: Existence, uniqueness, HUR sta-bility, and regularity of solutions. Journal of Function Spaces, 2020(1), 144237680. https: //doi.org/10.1155/2020/4237680. · Zbl 1462.45011 · doi:10.1155/2020/4237680
[25] A. A. Kilbas, H. M. Srivastava & J. J. Trujillo (2006). Theory and applications of fractional differ-ential equations. Elsevier, Netherlands. · Zbl 1092.45003
[26] Z. Laadjal & Q.-H. Ma (2021). Existence and uniqueness of solutions for nonlinear Volterra-Fredholm integro-differential equation of fractional order with boundary conditions. Mathe-matical Methods in the Applied Sciences, 44(10), 8215-8227. https://doi.org/10.1002/mma.5845. · Zbl 1473.45011 · doi:10.1002/mma.5845
[27] N. M. A. N. Long & K. Alsadi (2022). Numerical approaches for solving mixed Volterra-Fredholm fractional integro-differential equations. In International Conference on Mathematical Sciences and Statistics 2022 (ICMSS 2022), pp. 278-285. Atlantis Press, Malaysia.
[28] M. Mohammad & A. Trounev (2020). Fractional nonlinear Volterra-Fredholm integral equa-tions involving Atangana-Baleanu fractional derivative: Framelet applications. Advances in Difference Equations, 2020(1), 618. https://doi.org/10.1016/j.apnum.2020.06.004. · doi:10.1016/j.apnum.2020.06.004
[29] A. E. Ofem, A. Hussain, O. Joseph, M. O. Udo, U. Ishtiaq, H. Al Sulami & C. F. Chikwe (2022). Solving fractional Volterra-Fredholm integro-differential equations via A** iteration method. Axioms, 11(9), 470. https://doi.org/10.3390/axioms11090470. · doi:10.3390/axioms11090470
[30] V. Pata (2019). Fixed point theorems and applications. Springer Cham, Switzerland. · Zbl 1448.47001
[31] P. Rahimkhani & Y. Ordokhani (2020). Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions. Journal of Computa-tional and Applied Mathematics, 365, 112365. https://doi.org/10.1016/j.cam.2019.112365. · Zbl 1524.65979 · doi:10.1016/j.cam.2019.112365
[32] M. M. Raja & V. Vijayakumar (2022). Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1, 2) with sectorial operators. Chaos, Solitons & Fractals, 159, 112127. https://doi.org/10.1016/j.chaos.2022.112127. · Zbl 1505.34096 · doi:10.1016/j.chaos.2022.112127
[33] M. Riahi Beni (2022). Legendre wavelet method combined with the Gauss quadrature rule for numerical solution of fractional integro-differential equations. Iranian Journal of Numerical Analysis and Optimization, 12(1), 229-249. doi:10.22067/ijnao.2021.73189.1070. · Zbl 1522.65253 · doi:10.22067/ijnao.2021.73189.1070
[34] A. Roohollahi, B. Ghazanfari & S. Akhavan (2020). Numerical solution of the mixed Volterra-Fredholm integro-differential multi-term equations of fractional order. Journal of Computa-tional and Applied Mathematics, 376, 112828. https://doi.org/10.1016/j.cam.2020.112828. · Zbl 1436.65155 · doi:10.1016/j.cam.2020.112828
[35] F. Saemi, H. Ebrahimi, M. Shafiee & K. Hosseini (2023). A detailed study on 2D Volterra-Fredholm integro-differential equations involving the Caputo fractional derivative. Journal of Computational and Applied Mathematics, 420, 114820. https://doi.org/10.1016/j.cam.2022. 114820. · Zbl 1524.65981 · doi:10.1016/j.cam.2022.114820
[36] K. Shah & R. Gul (2022). Study of fractional integro-differential equations under Caputo-Fabrizio derivative. Mathematical Methods in the Applied Sciences, 45(13), 7940-7953. https: //doi.org/10.1002/mma.7477. · Zbl 1532.45009 · doi:10.1002/mma.7477
[37] S. Thomas & S. K. Nadupuri (2023). A new compact numerical scheme for solving time fractional mobile-immobile advection-dispersion model. Malaysian Journal of Mathematical Sciences, 17(3), 241-262. https://doi.org/10.47836/mjms.17.3.02. · Zbl 07828471 · doi:10.47836/mjms.17.3.02
[38] A. Toma & O. Postavaru (2023). A numerical method to solve fractional Fredholm-Volterra integro-differential equations. Alexandria Engineering Journal, 68, 469-478. https://doi.org/ 10.1016/j.aej.2023.01.033. · doi:10.1016/j.aej.2023.01.033
[39] M. Turkyilmazoglu (2019). Accelerating the convergence of Adomian decomposition method (ADM). Journal of Computational Science, 31, 54-59. https://doi.org/10.1016/j.jocs. 2018.12.014. · doi:10.1016/j.jocs.2018.12.014
[40] P. Verma & M. Kumar (2020). An analytical solution with existence and uniqueness condi-tions for fractional integro-differential equations. International Journal of Modeling, Simulation, and Scientific Computing, 11(5), 2050045. https://doi.org/10.1142/S1793962320500452. · doi:10.1142/S1793962320500452
[41] A.-M. Wazwaz (2011). Linear and nonlinear integral equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21449-3. · Zbl 1227.45002 · doi:10.1007/978-3-642-21449-3
[42] X.-J. Yang, F. Gao & Y. Ju (2020). General fractional derivatives with applications in viscoelasticity. Academic Press, New York, USA. · Zbl 1446.26001
[43] Y. Zhou, J. Wang & L. Zhang (2016). Basic theory of fractional differential equations. World Scientific, Singapore.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.