×

An avoidance principle and Margulis functions for expanding translates of unipotent orbits. (English) Zbl 07924659

Summary: We prove an avoidance principle for expanding translates of unipotent orbits for some quotients of semisimple Lie groups. In addition, we prove a quantitative isolation result of closed orbits and give an upper bound on the number of closed orbits of bounded volume. The proofs of our results rely on the construction of a Margulis function and the theory of finite dimensional representations of semisimple Lie groups.

MSC:

22F30 Homogeneous spaces
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
22E46 Semisimple Lie groups and their representations

References:

[1] J. S. Athreya, Quantitative recurrence and large deviations for Teichmuller geodesic flow, Geom. Dedicata, 119 (2006), 121-140. doi: 10.1007/s10711-006-9058-z. · Zbl 1108.32007 · doi:10.1007/s10711-006-9058-z
[2] T. Bénard and N. de Saxcé, Random walks with bounded first moment on finite-volume spaces, Geom. Funct. Anal., 32 (2022), 687-724. doi: 10.1007/s00039-022-00607-6. · Zbl 1503.37009 · doi:10.1007/s00039-022-00607-6
[3] Y. Benoist and J.-F. Quint, Mesures stationnaires et fermés invariants des espaces homogènes, Ann. of Math. (2), 174 (2011), 1111-1162. doi: 10.4007/annals.2011.174.2.8. · Zbl 1241.22007 · doi:10.4007/annals.2011.174.2.8
[4] Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (II), J. Amer. Math. Soc., 26 (2013), 659-734. doi: 10.1090/S0894-0347-2013-00760-2. · Zbl 1268.22011 · doi:10.1090/S0894-0347-2013-00760-2
[5] Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (III), Ann. of Math. (2), 178 (2013), 1017-1059. doi: 10.4007/annals.2013.178.3.5. · Zbl 1279.22013 · doi:10.4007/annals.2013.178.3.5
[6] S. G. Dani, On invariant measures, minimal sets and a lemma of Margulis, Invent. Math., 51 (1979), 239-260. doi: 10.1007/BF01389917. · Zbl 0415.28008 · doi:10.1007/BF01389917
[7] S. G. Dani and G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), 1-17. doi: 10.1007/BF02872005. · Zbl 0731.22008 · doi:10.1007/BF02872005
[8] S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, in I. M. Gelfand Seminar, Adv. Soviet Math., Amer. Math. Soc., Providence, RI, 16 (1993), 91-137. doi: 10.1090/advsov/016.1/03. · Zbl 0814.22003 · doi:10.1090/advsov/016.1/03
[9] M. Einsiedler, G. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math., 177 (2009), 137-212. doi: 10.1007/s00222-009-0177-7. · Zbl 1176.37003 · doi:10.1007/s00222-009-0177-7
[10] A. Eskin and E. Lindenstrauss, Random walks on locally homogeneous spaces, preprint, 2018.
[11] A. Eskin and E. Lindenstrauss, Zariski dense random walks on homogeneous spaces, preprint, 2018.
[12] A. Eskin and G. Margulis, Recurrence properties of random walks on finite volume homogeneous manifolds, in Random Walks and Geometry, 431-444, Walter de Gruyter, Berlin, 2004. doi: 10.1515/9783110198089.2.431. · doi:10.1515/9783110198089.2.431
[13] A. Eskin, G. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141. doi: 10.2307/120984. · Zbl 0906.11035 · doi:10.2307/120984
[14] A. Eskin and H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478. doi: 10.1017/S0143385701001225. · Zbl 1096.37501 · doi:10.1017/S0143385701001225
[15] A. Eskin, M. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the \(\operatorname{S} \operatorname{L}(2, \mathbb{R})\) action on moduli space, Ann. of Math. (2), 182 (2015), 673-721. doi: 10.4007/annals.2015.182.2.7. · Zbl 1357.37040 · doi:10.4007/annals.2015.182.2.7
[16] A. Eskin and S. Mozes, Margulis functions and their applications, in Dynamics, Geometry, Number Theory. The Impact of Margulis on Modern Mathematics, 342-361, University of Chicago Press, 2022. doi: 10.7208/chicago/9780226804163.003.0010. · Zbl 1508.37018 · doi:10.7208/chicago/9780226804163.003.0010
[17] M. Fraczyk and T. Gelander, Infinite volume and infinite injectivity radius, Ann. of Math. (2), 197 (2023), 389-421. doi: 10.4007/annals.2023.197.1.6. · Zbl 1529.22007 · doi:10.4007/annals.2023.197.1.6
[18] H. Garland and M. S. Raghunathan, Fundamental domains for lattices in (R-)rank \(1\) semisimple Lie groups, Ann. of Math. (2), 92 (1970), 279-326. doi: 10.2307/1970838. · Zbl 0206.03603 · doi:10.2307/1970838
[19] T. Gelander, A. Levit and G. Margulis, Effective discreteness radius of stabilisers for stationary actions, Michigan Math. J., 72 (2022), 389-438. doi: 10.1307/mmj/20217209. · Zbl 1520.22008 · doi:10.1307/mmj/20217209
[20] L. Guan and R. Shi, Hausdorff dimension of divergent trajectories on homogeneous spaces, Compos. Math. (2), 156 (2020), 340-359. doi: 10.1112/S0010437X19007711. · Zbl 1436.37040 · doi:10.1112/S0010437X19007711
[21] S. Kadyrov, D. Kleinbock, E. Lindenstrauss and G. A. Margulis, Singular systems of linear forms and non-escape of mass in the space of lattices, J. Anal. Math., 133 (2017), 253-277. doi: 10.1007/s11854-017-0033-4. · Zbl 1385.37005 · doi:10.1007/s11854-017-0033-4
[22] A. Katz, Margulis’ inequality for translates of horospherical orbits and applications, preprint, 2020.
[23] D. Kleinbock and S. Mirzadeh, On the dimension drop conjecture for diagonal flows on the space of lattices, Adv. Math., 425 (2023), Paper No. 109058, 46 pp. doi: 10.1016/j.aim.2023.109058. · Zbl 1520.37007 · doi:10.1016/j.aim.2023.109058
[24] E. Lindenstrauss, G. Margulis, A. Mohammadi and N. Shah, Quantitative behavior of unipotent flows and an effective avoidance principle, J. Anal. Math, published online, 2023. doi: 10.1007/s11854-023-0309-9. · doi:10.1007/s11854-023-0309-9
[25] E. Lindenstrauss and A. Mohammadi, Polynomial effective density in quotients of \(\mathbb{H}^3\) and \(\mathbb{H}^2 \times \mathbb{H}^2\), Invent. Math., 231 (2023), 1141-1237. doi: 10.1007/s00222-022-01162-5. · Zbl 1514.37010 · doi:10.1007/s00222-022-01162-5
[26] G. A. Margulis, The action of unipotent groups in a lattice space, Mat. Sb. (N.S.), 86 (1971), 552-556. · Zbl 0257.54037
[27] A. Mohammadi and H. Oh, Isolations of geodesic planes in the frame bundle of a hyperbolic 3-manifold, Compos. Math., 159 (2023), 488-529. doi: doi.org/10.1112/S0010437X22007928. · Zbl 1517.37043 · doi:10.1112/S0010437X22007928
[28] M. Ratner, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math., 165 (1990), 229-309. doi: 10.1007/BF02391906. · Zbl 0745.28010 · doi:10.1007/BF02391906
[29] M. Ratner, Strict measure rigidity for unipotent subgroups of solvable groups, Invent. Math., 101 (1990), 449-482. doi: 10.1007/BF01231511. · Zbl 0745.28009 · doi:10.1007/BF01231511
[30] M. Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2), 134 (1991), 545-607. doi: 10.2307/2944357. · Zbl 0763.28012 · doi:10.2307/2944357
[31] M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J., 63 (1991), 235-280. doi: 10.1215/S0012-7094-91-06311-8. · Zbl 0733.22007 · doi:10.1215/S0012-7094-91-06311-8
[32] F. Rodriguez Hertz and Z. Wang, On \(\epsilon \)-escaping trajectories in homogeneous spaces, Discrete Contin. Dyn. Syst., 41 (2021), 239-357. doi: 10.3934/dcds.2020365. · Zbl 1467.37003 · doi:10.3934/dcds.2020365
[33] N. A. Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 105-125. doi: 10.1007/BF02837164. · Zbl 0864.22004 · doi:10.1007/BF02837164
[34] N. A. Shah and B. Weiss, On actions of epimorphic subgroups on homogeneous spaces, Ergodic Theory Dynam. Systems, 20 (2000), 567-592. doi: 10.1017/S0143385700000298. · Zbl 0949.22012 · doi:10.1017/S0143385700000298
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.