×

On the number of cycles in commutators of random permutations. (English) Zbl 07924325

Summary: We present general links between statistics of non-Hermitian random matrices and the distribution of the number of cycles of some specific random permutations. In particular, we derive explicit formulas for the generating functions of the number of cycles in the commutator \([\sigma, \tau] = \sigma\tau\sigma^{-1}\tau^{- 1}\) where \(\sigma\) is uniformly distributed, and \(\tau\) is either one cycle, the product of many transpositions, or the product of two cycles of same size, the latter case being a new result.

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
62-XX Statistics

References:

[1] ALEXEEV, N. and ZOGRAF, P. (2011). Hultman numbers, polygon gluings and matrix integrals. Available at arXiv:1111.3061.
[2] ALEXEEV, N. and ZOGRAF, P. (2014). Random matrix approach to the distribution of genomic distance. J. Comput. Biol. 21 622-631. Digital Object Identifier: 10.1089/cmb.2013.0066 Google Scholar: Lookup Link MathSciNet: MR3245230 · doi:10.1089/cmb.2013.0066
[3] BOURGADE, P., HUGHES, C. P., NIKEGHBALI, A. and YOR, M. (2008). The characteristic polynomial of a random unitary matrix: A probabilistic approach. Duke Math. J. 145 45-69. Digital Object Identifier: 10.1215/00127094-2008-046 Google Scholar: Lookup Link MathSciNet: MR2451289 · Zbl 1155.15025 · doi:10.1215/00127094-2008-046
[4] CHMUTOV, S. and PITTEL, B. (2016). On a surface formed by randomly gluing together polygonal discs. Adv. in Appl. Math. 73 23-42. Digital Object Identifier: 10.1016/j.aam.2015.09.016 Google Scholar: Lookup Link zbMATH: 1328.05003 MathSciNet: MR3433499 · Zbl 1328.05003 · doi:10.1016/j.aam.2015.09.016
[5] DE JEU, M. (2003). Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights. Ann. Probab. 31 1205-1227. Digital Object Identifier: 10.1214/aop/1055425776 Google Scholar: Lookup Link MathSciNet: MR1988469 · Zbl 1050.44003 · doi:10.1214/aop/1055425776
[6] DIACONIS, P., EVANS, S. N. and GRAHAM, R. (2014). Unseparated pairs and fixed points in random permutations. Adv. in Appl. Math. 61 102-124. Digital Object Identifier: 10.1016/j.aam.2014.05.006 Google Scholar: Lookup Link MathSciNet: MR3267067 · Zbl 1372.60010 · doi:10.1016/j.aam.2014.05.006
[7] DUBACH, G. (2018). Powers of Ginibre eigenvalues. Electron. J. Probab. 23 Paper No. 111, 31. Digital Object Identifier: 10.1214/18-ejp234 Google Scholar: Lookup Link MathSciNet: MR3878136 · Zbl 1402.60008 · doi:10.1214/18-ejp234
[8] DUBACH, G. and PELED, Y. (2021). On words of non-Hermitian random matrices. Ann. Probab. 49 1886-1916. Digital Object Identifier: 10.1214/20-aop1496 Google Scholar: Lookup Link MathSciNet: MR4260470 · Zbl 1467.60007 · doi:10.1214/20-aop1496
[9] HOUGH, J. B., KRISHNAPUR, M., PERES, Y. and VIRÁG, B. (2006). Determinantal processes and independence. Probab. Surv. 3 206-229. Digital Object Identifier: 10.1214/154957806000000078 Google Scholar: Lookup Link MathSciNet: MR2216966 · Zbl 1189.60101 · doi:10.1214/154957806000000078
[10] LINIAL, N. and PUDER, D. (2010). Word maps and spectra of random graph lifts. Random Structures Algorithms 37 100-135. Digital Object Identifier: 10.1002/rsa.20304 Google Scholar: Lookup Link MathSciNet: MR2674623 · Zbl 1242.60011 · doi:10.1002/rsa.20304
[11] MACDONALD, I. G. (1998). Symmetric Functions and Orthogonal Polynomials. University Lecture Series 12. Amer. Math. Soc., Providence, RI. Digital Object Identifier: 10.1090/ulect/012 Google Scholar: Lookup Link MathSciNet: MR1488699 · Zbl 0887.05053 · doi:10.1090/ulect/012
[12] NICA, A. (1994). On the number of cycles of given length of a free word in several random permutations. Random Structures Algorithms 5 703-730. Digital Object Identifier: 10.1002/rsa.3240050506 Google Scholar: Lookup Link MathSciNet: MR1300595 · Zbl 0808.60018 · doi:10.1002/rsa.3240050506
[13] STANLEY, R. P. (2011). Two enumerative results on cycles of permutations. European J. Combin. 32 937-943. Digital Object Identifier: 10.1016/j.ejc.2011.01.011 Google Scholar: Lookup Link MathSciNet: MR2821562 · Zbl 1238.05015 · doi:10.1016/j.ejc.2011.01.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.