×

Stability and bifurcation analysis of a reaction-diffusion SIRS epidemic model with the general saturated incidence rate. (English) Zbl 07923960

Summary: In this paper, we are concerned with the dynamics of a reaction-diffusion SIRS epidemic model with the general saturated nonlinear incidence rates. Firstly, we show the global existence and boundedness of the in-time solutions for the parabolic system. Secondly, for the ODEs system, we analyze the existence and stability of the disease-free equilibrium solution, the endemic equilibrium solutions as well as the bifurcating periodic solution. In particular, in the language of the basic reproduction number, we are able to address the existence of the saddle-node-like bifurcation and the secondary bifurcation (Hopf bifurcation). Our results also suggest that the ODEs system has a Allee effect, i.e., one can expect either the coexistence of a stable disease-free equilibrium and a stable endemic equilibrium solution, or the coexistence of a stable disease-free equilibrium solution and a stable periodic solution. Finally, for the PDEs system, we are capable of deriving the Turing instability criteria in terms of the diffusion rates for both the endemic equilibrium solutions and the Hopf bifurcating periodic solution. The onset of Turing instability can bring out multi-level bifurcations and manifest itself as the appearance of new spatiotemporal patterns. It seems also interesting to note that \(p\) and \(k\), appearing in the saturated incidence rate \(kSI^p /(1+\alpha I^p)\), tend to play far reaching roles in the spatiotemporal pattern formations.

MSC:

34C23 Bifurcation theory for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34C45 Invariant manifolds for ordinary differential equations
34D10 Perturbations of ordinary differential equations
35B32 Bifurcations in context of PDEs
35B36 Pattern formations in context of PDEs
35K57 Reaction-diffusion equations
35K58 Semilinear parabolic equations
Full Text: DOI

References:

[1] Agnew, P.; Koella, J., Life-history interactions with environmental conditions in a host-parasite relationship and the parasite’s mode of transmission, Evol. Ecol., 13, 67-89, 1999 · doi:10.1023/A:1006586131235
[2] Andral, L.; Artois, M.; Aubert, M.; Blancou, J., Radiotracking of rabid foxes, Comp. Immun. Microbiol. Infec. Dis, 5, 285-291, 1982 · doi:10.1016/0147-9571(82)90050-9
[3] Berestycki, H.; Roquejoffre, J.; Rossi, L., Propagation of epidemic along lines with fast diffusion, Bull. Math. Biol., 83, 2, 1-34, 2021 · Zbl 1457.92156
[4] Brauer, F.; van den Driessche, P.; Wu, J., Mathematical Epidemiology, 2008, Berlin: Springer, Berlin · Zbl 1159.92034 · doi:10.1007/978-3-540-78911-6
[5] Britton, N., Essential Mathematical Biology, 2003, London: Springer, London · Zbl 1037.92001 · doi:10.1007/978-1-4471-0049-2
[6] Capasso, V.; Serio, G., A generalization of the Kermack-McKendrick determinist epidemic model, Math. Biosci., 42, 43-61, 1978 · Zbl 0398.92026 · doi:10.1016/0025-5564(78)90006-8
[7] Capone, F.; Cataldis, V.; Luca, R., Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71, 5, 1107-1131, 2015 · Zbl 1355.92107 · doi:10.1007/s00285-014-0849-9
[8] Chen, S.; Huang, J., Destabilization of synchronous periodic solutions for patch models, J. Differ. Eq., 364, 378-411, 2023 · Zbl 1519.34061 · doi:10.1016/j.jde.2023.03.041
[9] Coddington, E.; Levinsion, N., Theory of Ordinary Differential Equations, 1955, New York: McGraw-Hill, New York · Zbl 0064.33002
[10] Conway, E.; Hoff, D.; Smoller, J., Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35, 1, 1-16, 1978 · Zbl 0383.35035 · doi:10.1137/0135001
[11] Du, Z.; Peng, R., A priori \(L^\infty\) estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72, 1429-1439, 2016 · Zbl 1338.35220 · doi:10.1007/s00285-015-0914-z
[12] Ebert, D.; Zschokke-Rohringer, C.; Carius, H., Dose effects and density-dependent regulation of two microparasites of Daphnia magna, Oecologia, 122, 200-209, 2000 · doi:10.1007/PL00008847
[13] Grassly, N.; Fraser, C.; Wenger, J.; Deshpande, J.; Sutter, R.; Heymann, D.; Aylward, R., New strategies for the elimination of polio from India, Science, 314, 1150-1153, 2006 · doi:10.1126/science.1130388
[14] Hassard, B.; Kazarinoff, N.; Wan, Y., Theory and Application of Hopf Bifurcation, 1981, Cambridge: Cambridge University Press, Cambridge · Zbl 0474.34002
[15] Hethcote, H.; van den Driessche, P., Some epidemiological models with nonlinear incidence, J. Math. Biol., 29, 271-287, 1991 · Zbl 0722.92015 · doi:10.1007/BF00160539
[16] Hu, Z.; Bi, P.; Ma, W.; Ruan, S., Bifurcations of an SIRS epidemic model with nonlinear incidence rate, Discrete Cont. Dyn. B, 15, 93-122, 2011 · Zbl 1207.92040
[17] Le, D., Dissipativity and global attractors for a class of quasilinear parabolic systems, Commun. Part. Differ. Equ., 22, 413-433, 1997 · Zbl 0884.35058 · doi:10.1080/03605309708821269
[18] Li, G.; Wang, W., Bifurcation analysis of an epidemic model with nonlinear incidence, Appl. Math. Comp., 214, 411-423, 2009 · Zbl 1168.92323 · doi:10.1016/j.amc.2009.04.012
[19] Little, T.; Ebert, D., The cause of parasitic infection in natural populations of Daphnia (Crustacea: Cladocera): the role of host genetics, Proc. R. Soc. Lond. B, 267, 2037-2042, 2000 · doi:10.1098/rspb.2000.1246
[20] Liu, W., Criterion of Hopf bifurcation without using eigenvalues, J. Math. Anal. Appl., 182, 250-256, 1994 · Zbl 0794.34033 · doi:10.1006/jmaa.1994.1079
[21] Liu, W.; Levin, S.; Iwasa, Y., Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23, 187-204, 1986 · Zbl 0582.92023 · doi:10.1007/BF00276956
[22] Lizana, M.; Rivero, J., Multiparametric bifurcations for a model in epidemiology, J. Math. Biol., 35, 21-36, 1996 · Zbl 0868.92024 · doi:10.1007/s002850050040
[23] Lou, Y.; Zhao, X., A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62, 543-568, 2011 · Zbl 1232.92057 · doi:10.1007/s00285-010-0346-8
[24] Lu, M.; Huang, J.; Ruan, S.; Yu, P., Bifurcation analysis of an SIRS epidemic model with a generalized monotone and saturated incidence rate, J. Differ. Equ., 267, 1859-1898, 2019 · Zbl 1421.92034 · doi:10.1016/j.jde.2019.03.005
[25] Maginu, K., Stability of spatially homogeneous periodic solutions of reaction-diffusion equations, J. Differ. Equ., 31, 1, 130-138, 1979 · Zbl 0397.34053 · doi:10.1016/0022-0396(79)90156-6
[26] Marsden, J.; McCracken, M., The Hopf Bifurcation and Its Applications, 1970, New York: Springer, New York
[27] McLean, A.; Bostock, C., Scrapie infections initiated at varying doses: an analysis of 117 titration experiments, Philos. Trans. R. Soc. Lond. B, 355, 1043-1050, 2000 · doi:10.1098/rstb.2000.0641
[28] Morita, Y., Destabilization of periodic solutions arising in delay-diffusion systems in several space dimensions, Japan, J. Appl. Math., 1, 39-65, 1984 · Zbl 0576.35008
[29] Murray, J.; Seward, W., On the spatial spread of rabies among foxes with immunity, J. Theor. Biol., 156, 327-348, 1992 · doi:10.1016/S0022-5193(05)80679-4
[30] Murray, J.; Stanley, E.; Brown, D., On the spatial spread of rabies among foxes, Proc. Roy. Soc. Lond. B, 229, 111-150, 1986 · doi:10.1098/rspb.1986.0078
[31] Okubo, A.; Levin, S., Diffusion and Ecological Problems, 2001, New York: Springer, New York · doi:10.1007/978-1-4757-4978-6
[32] Oliveira, L., Instability of homogeneous periodic solutions of parabolic-delay equations, J. Differ. Equ., 109, 42-76, 1994 · Zbl 0811.35156 · doi:10.1006/jdeq.1994.1044
[33] Regoes, R.; Ebert, D.; Bonhoeffer, S., Dose-dependent infection rates of parasites produce the Allee effect in epidemiology, Proc. Roy. Soc. Lond. B, 269, 271-279, 2002 · doi:10.1098/rspb.2001.1816
[34] Ruan, S., Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis, Nat. Resour. Model., 11, 131-142, 1998 · doi:10.1111/j.1939-7445.1998.tb00304.x
[35] Ruan, S.; Wang, W., Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equ., 188, 1, 135-163, 2003 · Zbl 1028.34046 · doi:10.1016/S0022-0396(02)00089-X
[36] She, G.; Yi, F., Dynamics and bifurcations in a non-degenerate homogeneous diffusive SIR rabies model, SIAM J. Appl. Math., 84, 2, 632-660, 2024 · Zbl 1540.35415 · doi:10.1137/23M159055X
[37] Shigesada, N.; Kawasaki, K., Biological Invasions: Theory and Practice, 1997, Oxford: Oxford University Press, Oxford · doi:10.1093/oso/9780198548522.001.0001
[38] Song, Q.; Yi, F., Spatiotemporal patterns and bifurcations in a delayed diffusive predator-prey system with fear effects, J. Differ. Equ., 388, 151-187, 2024 · Zbl 1534.92060 · doi:10.1016/j.jde.2024.01.003
[39] Tang, Y.; Huang, D.; Ruan, S.; Zhang, W., Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69, 2, 621-639, 2008 · Zbl 1171.34033 · doi:10.1137/070700966
[40] Turing, A., The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. Lond., B237, 37-72, 1952 · Zbl 1403.92034
[41] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48, 2002 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[42] Wang, W.; Zhao, X., A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71, 147-168, 2011 · Zbl 1228.35118 · doi:10.1137/090775890
[43] Wang, W.; Zhao, X., Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11, 4, 1652-1673, 2013 · Zbl 1259.35120 · doi:10.1137/120872942
[44] Wang, M.; Yi, F., On the dynamics of the diffusive Field-Noyes model for the Belousov-Zhabotinskii reaction, J. Differ. Equ., 318, 443-479, 2022 · Zbl 1484.35066 · doi:10.1016/j.jde.2022.02.031
[45] Wang, W.; Wu, G.; Wang, X.; Feng, Z., Dynamics of a reaction-advection-diffusion model for cholera transmission with human behavior change, J. Math. Biol., 373, 176-215, 2023 · Zbl 1522.92077
[46] Williams, O.; Gouws, E.; Hankins, C.; Getz, W.; Hargrove, J.; do Zoysa, I.; Dye, C.; Auvert, B., The potential impact of male circumcision on HIV in sub-Saharor Africa, Plos Med., 3, 1032-1040, 2006 · doi:10.1371/journal.pmed.0030262
[47] Xiao, D.; Ruan, S., Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208, 419-429, 2007 · Zbl 1119.92042 · doi:10.1016/j.mbs.2006.09.025
[48] Yi, F., Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling, J. Differ. Equ., 281, 379-410, 2021 · Zbl 1472.35036 · doi:10.1016/j.jde.2021.02.006
[49] Yi, F.; Wei, J.; Shi, J., Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equ., 246, 5, 1944-1977, 2009 · Zbl 1203.35030 · doi:10.1016/j.jde.2008.10.024
[50] Zhang, R.; Wang, J., On the global attractivity for a reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 84, 6, 1-12, 2022 · Zbl 1489.92188 · doi:10.1007/s00285-021-01694-z
[51] Zhang, F.; Cui, W.; Dai, Y.; Zhao, Y., Bifurcations of an SIRS epidemic model with a general saturated incidence rate, Math. Biosci. Eng., 19, 11, 10710-10730, 2022 · Zbl 1511.92093 · doi:10.3934/mbe.2022501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.