×

Latent level correlation modeling of multivariate discrete-valued financial time series. (English) Zbl 07923939

Summary: In high-frequency financial data, dynamic patterns of transaction counts in regular time intervals provide crucial insights into market microstructure, such as short-term trading activities and intermittent intensities of price oscillation. In this paper we propose a Bayesian hierarchical framework that incorporates correlated latent level and temporal effects to model multivariate count data during intraday transaction intervals. Built on the INLA method for implementation, our framework proves to be competitive with the traditional MCMC approach in terms of model inference and computational cost. We demonstrate the efficacy of our methodology by applying it to assets from three Global Industry Classification Standard (GICS) sectors, namely, healthcare, energy, and industrials. The analysis uncovers various microstructures of financial count data using our framework. Specifically, our model featuring a correlated latent effect structure adeptly captures the pattern of the empirical correlations within the count data patterns with additional statistical inference, such as assessing different associations between short-term averaged trading size as well as trading duration, the counts at different risk levels, and uncovering differential levels of uncertainty resulted from market temporal behavior and unobservable latent effects across the three sectors. We also discuss some potential applications of our framework in real-world scenarios.

MSC:

62Pxx Applications of statistics

References:

[1] AITCHISON, J. and HO, C.-H. (1989). The multivariate Poisson-log normal distribution. Biometrika 76 643-653. Digital Object Identifier: 10.1093/biomet/76.4.643 Google Scholar: Lookup Link MathSciNet: MR1041409 · Zbl 0679.62040 · doi:10.1093/biomet/76.4.643
[2] AKTEKIN, T., POLSON, N. and SOYER, R. (2018). Sequential Bayesian analysis of multivariate count data. Bayesian Anal. 13 385-409. Digital Object Identifier: 10.1214/17-BA1054 Google Scholar: Lookup Link MathSciNet: MR3780428 · Zbl 1407.62308 · doi:10.1214/17-BA1054
[3] AL-OSH, M. A. and ALZAID, A. A. (1987). First-order integer-valued autoregressive (INAR(1)) process. J. Time Series Anal. 8 261-275. Digital Object Identifier: 10.1111/j.1467-9892.1987.tb00438.x Google Scholar: Lookup Link MathSciNet: MR0903755 · Zbl 0617.62096 · doi:10.1111/j.1467-9892.1987.tb00438.x
[4] BARON, M., BROGAARD, J., HAGSTRÖMER, B. and KIRILENKO, A. (2019). Risk and return in high-frequency trading. J. Financ. Quant. Anal. 54 993-1024.
[5] BERAHA, M., FALCO, D. and GUGLIELMI, A. (2021). JAGS, NIMBLE, Stan: A detailed comparison among Bayesian MCMC software. arXiv preprint. Available at arXiv:2107.09357.
[6] Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. (2017). Variational inference: A review for statisticians. J. Amer. Statist. Assoc. 112 859-877. Digital Object Identifier: 10.1080/01621459.2017.1285773 Google Scholar: Lookup Link MathSciNet: MR3833609 MathSciNet: MR3671776 · doi:10.1080/01621459.2017.1285773
[7] BROGAARD, J., CARRION, A., MOYAERT, T., RIORDAN, R., SHKILKO, A. and SOKOLOV, K. (2018). High frequency trading and extreme price movements. J. Financ. Econ. 128 253-265.
[8] CASTRO-CAMILO, D., DE CARVALHO, M. and WADSWORTH, J. (2018). Time-varying extreme value dependence with application to leading European stock markets. Ann. Appl. Stat. 12 283-309. Digital Object Identifier: 10.1214/17-AOAS1089 Google Scholar: Lookup Link MathSciNet: MR3773394 · Zbl 1393.62024 · doi:10.1214/17-AOAS1089
[9] DE CARVALHO, M., HUSER, R. and RUBIO, R. (2023). Similarity-based clustering for patterns of extreme values. Stat 12 e560. Digital Object Identifier: 10.1002/sta4.560 Google Scholar: Lookup Link MathSciNet: MR4604508 · Zbl 07858689 · doi:10.1002/sta4.560
[10] EFRON, B. (1986). Double exponential families and their use in generalized linear regression. J. Amer. Statist. Assoc. 81 709-721. MathSciNet: MR0860505 · Zbl 0611.62072
[11] FERLAND, R., LATOUR, A. and ORAICHI, D. (2006). Integer-valued GARCH process. J. Time Series Anal. 27 923-942. Digital Object Identifier: 10.1111/j.1467-9892.2006.00496.x Google Scholar: Lookup Link MathSciNet: MR2328548 · Zbl 1150.62046 · doi:10.1111/j.1467-9892.2006.00496.x
[12] GAMERMAN, D., DOS SANTOS, T. R. and FRANCO, G. C. (2013). A non-Gaussian family of state-space models with exact marginal likelihood. J. Time Series Anal. 34 625-645. Digital Object Identifier: 10.1111/jtsa.12039 Google Scholar: Lookup Link MathSciNet: MR3127211 · Zbl 1306.62196 · doi:10.1111/jtsa.12039
[13] Gelman, A., Hwang, J. and Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Stat. Comput. 24 997-1016. Digital Object Identifier: 10.1007/s11222-013-9416-2 Google Scholar: Lookup Link MathSciNet: MR3253850 · Zbl 1332.62090 · doi:10.1007/s11222-013-9416-2
[14] HEINEN, A. (2003). Modelling time series count data: An autoregressive conditional Poisson model. Available at SSRN 1117187.
[15] JACOBS, P. A. and LEWIS, P. A. W. (1983). Stationary discrete autoregressive-moving average time series generated by mixtures. J. Time Series Anal. 4 19-36. Digital Object Identifier: 10.1111/j.1467-9892.1983.tb00354.x Google Scholar: Lookup Link MathSciNet: MR0711293 · Zbl 0526.62084 · doi:10.1111/j.1467-9892.1983.tb00354.x
[16] JUNG, R. C., LIESENFELD, R. and RICHARD, J.-F. (2011). Dynamic factor models for multivariate count data: An application to stock-market trading activity. J. Bus. Econom. Statist. 29 73-85. Digital Object Identifier: 10.1198/jbes.2009.08212 Google Scholar: Lookup Link MathSciNet: MR2789392 · Zbl 1214.62092 · doi:10.1198/jbes.2009.08212
[17] KARLIS, D. and MELIGKOTSIDOU, L. (2005). Multivariate Poisson regression with covariance structure. Stat. Comput. 15 255-265. Digital Object Identifier: 10.1007/s11222-005-4069-4 Google Scholar: Lookup Link MathSciNet: MR2205389 · doi:10.1007/s11222-005-4069-4
[18] KARLIS, D. and MELIGKOTSIDOU, L. (2007). Finite mixtures of multivariate Poisson distributions with application. J. Statist. Plann. Inference 137 1942-1960. Digital Object Identifier: 10.1016/j.jspi.2006.07.001 Google Scholar: Lookup Link MathSciNet: MR2323875 · Zbl 1116.60006 · doi:10.1016/j.jspi.2006.07.001
[19] LAVINE, I., CRON, A. and WEST, M. (2022). Bayesian computation in dynamic latent factor models. J. Comput. Graph. Statist. 31 651-665. Digital Object Identifier: 10.1080/10618600.2021.2021208 Google Scholar: Lookup Link MathSciNet: MR4495701 · Zbl 07633198 · doi:10.1080/10618600.2021.2021208
[20] LIESENFELD, R., NOLTE, I. and POHLMEIER, W. (2006). Modelling financial transaction price movements: A dynamic integer count data model. Empir. Econ. 30 795-825.
[21] LONGIN, F. (2016). Extreme Events in Finance: A Handbook of Extreme Value Theory and Its Applications. Wiley Handbook in Financial Engineering and Econometrics. Wiley, New York.
[22] MA, J., KOCKELMAN, K. M. and DAMIEN, P. (2008). A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accident Anal. Prev. 40 964-975.
[23] PARK, E. S. and LORD, D. (2007). Multivariate Poisson-lognormal models for jointly modeling crash frequency by severity. Transp. Res. Rec. 2019 1-6.
[24] PEDELI, X. and KARLIS, D. (2013). On estimation of the bivariate Poisson INAR process. Comm. Statist. Simulation Comput. 42 514-533. Digital Object Identifier: 10.1080/03610918.2011.639001 Google Scholar: Lookup Link MathSciNet: MR3020084 · Zbl 1347.62201 · doi:10.1080/03610918.2011.639001
[25] QUORESHI, A. M. M. S. (2017). A bivariate integer-valued long-memory model for high-frequency financial count data. Comm. Statist. Theory Methods 46 1080-1089. Digital Object Identifier: 10.1080/03610926.2014.997361 Google Scholar: Lookup Link MathSciNet: MR3565611 · Zbl 1396.62245 · doi:10.1080/03610926.2014.997361
[26] RAMAN, B., RAVISHANKER, N., SOYER, R., GORTI, V. and SEN, K. (2020). Dynamic Bayesian modeling of multiple count time series using R-INLA. J. Indian Statist. Assoc. 58 137-173. MathSciNet: MR4361464 · Zbl 1490.62268
[27] RAVISHANKER, N., RAMAN, B. and SOYER, R. (2022). Dynamic Time Series Models Using R-INLA: An Applied Perspective. CRC Press, Boca Raton.
[28] RAVISHANKER, N., SERHIYENKO, V. and WILLIG, M. R. (2014). Hierarchical dynamic models for multivariate times series of counts. Stat. Interface 7 559-570. Digital Object Identifier: 10.4310/SII.2014.v7.n4.a11 Google Scholar: Lookup Link MathSciNet: MR3302382 · Zbl 1388.62267 · doi:10.4310/SII.2014.v7.n4.a11
[29] RIEBLER, A. and HELD, L. (2017). Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace approximations. Biom. J. 59 531-549. Digital Object Identifier: 10.1002/bimj.201500263 Google Scholar: Lookup Link MathSciNet: MR3648612 · Zbl 1422.62332 · doi:10.1002/bimj.201500263
[30] RUE, H. and HELD, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability 104. CRC Press, Boca Raton, FL. Digital Object Identifier: 10.1201/9780203492024 Google Scholar: Lookup Link MathSciNet: MR2130347 · Zbl 1093.60003 · doi:10.1201/9780203492024
[31] Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 319-392. Digital Object Identifier: 10.1111/j.1467-9868.2008.00700.x Google Scholar: Lookup Link MathSciNet: MR2649602 · Zbl 1248.62156 · doi:10.1111/j.1467-9868.2008.00700.x
[32] RUE, H., RIEBLER, A., SØRBYE, S. H. ILLIAN, J. B., SIMPSON, D. and LINDGREN, F. K. (2017). Bayesian computing with INLA: A review. Annu. Rev. Stat. Appl. 4 395-421. Digital Object Identifier: 10.1214/16-STS576 Google Scholar: Lookup Link MathSciNet: MR3634300 · Zbl 1442.62060 · doi:10.1214/16-STS576
[33] RUIZ-CÁRDENAS, R., KRAINSKI, E. T. and RUE, H. (2012). Direct fitting of dynamic models using integrated nested Laplace approximations—INLA. Comput. Statist. Data Anal. 56 1808-1828. Digital Object Identifier: 10.1016/j.csda.2011.10.024 Google Scholar: Lookup Link MathSciNet: MR2892379 · Zbl 1368.62066 · doi:10.1016/j.csda.2011.10.024
[34] SADYKOVA, D., SCOTT, B. E., DOMINICIS, M. D., WAKELIN, S. L., SADYKOV, A. and WOLF, J. (2017). Bayesian joint models with INLA exploring marine mobile predator-prey and competitor species habitat overlap. Ecol. Evol. 7 5212-5226. Digital Object Identifier: 10.1002/ece3.3081 Google Scholar: Lookup Link · doi:10.1002/ece3.3081
[35] SALMON, M., SCHUMACHER, D., STARK, K. and HÖHLE, M. (2015). Bayesian outbreak detection in the presence of reporting delays. Biom. J. 57 1051-1067. Digital Object Identifier: 10.1002/bimj.201400159 Google Scholar: Lookup Link MathSciNet: MR3415359 · Zbl 1386.62065 · doi:10.1002/bimj.201400159
[36] SCHRÖDLE, B. and HELD, L. (2011). Spatio-temporal disease mapping using INLA. Environmetrics 22 725-734. Digital Object Identifier: 10.1002/env.1065 Google Scholar: Lookup Link MathSciNet: MR2843139 · doi:10.1002/env.1065
[37] SERHIYENKO, V., RAVISHANKER, N. and VENKATESAN, R. (2018). Multi-stage multivariate modeling of temporal patterns in prescription counts for competing drugs in a therapeutic category. Appl. Stoch. Models Bus. Ind. 34 61-78. Digital Object Identifier: 10.1002/asmb.2232 Google Scholar: Lookup Link MathSciNet: MR3769490 · Zbl 1411.62328 · doi:10.1002/asmb.2232
[38] SOYER, R. and ZHANG, D. (2022). Bayesian modeling of multivariate time series of counts. Wiley Interdiscip. Rev.: Comput. Stat. 14 Paper No. e1559, 18. MathSciNet: MR4515042 · Zbl 07910986
[39] WANG, Y., LIU, H., ZOU, J. and RAVISHANKER, N. (2024). Supplement to “Latent level correlation modeling of multivariate discrete-valued financial time series.” https://doi.org/10.1214/24-AOAS1890SUPP
[40] Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11 3571-3594. MathSciNet: MR2756194 · Zbl 1242.62024
[41] WEST, M. (2020). Bayesian forecasting of multivariate time series: Scalability, structure uncertainty and decisions. Ann. Inst. Statist. Math. 72 1-31. Digital Object Identifier: 10.1007/s10463-019-00741-3 Google Scholar: Lookup Link MathSciNet: MR4052647 · Zbl 1436.62441 · doi:10.1007/s10463-019-00741-3
[42] WEST, M., HARRISON, P. J. and MIGON, H. S. (1985). Dynamic generalized linear models and Bayesian forecasting. J. Amer. Statist. Assoc. 80 73-83. MathSciNet: MR0786598 · Zbl 0568.62032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.