×

Riemann-Liouville fractional integrals and derivatives on Morrey spaces and applications to a Cauchy-type problem. (English) Zbl 07923033

Summary: We investigate the boundedness and compactness of Riemann-Liouville integral operators on Morrey spaces, a class of nonseparable function spaces. Instead of adopting dual or maximal viewpoints in integrable function spaces, our approach is based on the compactness of the truncated Riemann-Liouville fractional integrals, leveraging a criterion for strongly pre-compact sets. By constructing a truncated Marchaud fractional derivative function, we characterize the solution to Abel’s equation on Morrey spaces. Utilizing the fixed-point theorem, we establish the existence and uniqueness of solutions to a Cauchy-type problem for fractional differential equations. Additionally, we provide an illustrative example to demonstrate the sufficiency of the conditions presented in our main result.

MSC:

34A08 Fractional ordinary differential equations
42B35 Function spaces arising in harmonic analysis
34B15 Nonlinear boundary value problems for ordinary differential equations
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] D. R. Adams and J. Xiao, Morrey spaces in harmonic analysis, Ark. Mat., 2012, 50, 201-230. · Zbl 1254.31009
[2] M. A. Al-Bassam, Some existence theorems on differential equations of gener-alized order, J. Reine Angew. Math., 1965, 218(1), 70-78. · Zbl 0156.30804
[3] K. F. Andersen and E. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc., 1988, 308, 547-558. · Zbl 0664.26002
[4] S. Arshad, V. Lupulescu and D. O’Regan, L p solutions for fractional integral equations, Fract. Calc. Appl. Anal, 2014, 17(1), 259-276. · Zbl 1312.45003
[5] J. Bastero, M. Milman and F. J. Ruiz, Commutators for the maximal and sharp functions, Proc. Amer. Math. Soc., 2000, 128, 3329-3334. · Zbl 0957.42010
[6] D.-C. Chang, X. T. Duong, J. Li, W. Wang and Q. Y. Wu, An explicit formula of Cauchy-Szegő kernel for quaternionic Siegel upper half space and applica-tions, Indiana Univ. Math. J., 2021, 70(6), 2451-2477. · Zbl 1487.30038
[7] P. Chen, X. T. Duong, J. Li and Q. Y. Wu, Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal., 2019, 277, 1639-1676. · Zbl 1423.43003
[8] Y. P. Chen, Y. Ding and X. X. Wang, Compactness of commutators for singular integrals on Morrey spaces, Canad. J. Math., 2012, 64(2), 257-281. · Zbl 1242.42009
[9] W. Chen, Z. W. Fu, L. Grafakos and Y. Wu, Fractional Fourier transforms on L p and applications, Appl. Comput. Harmon. Anal., 2021, 55, 71-96. · Zbl 1471.42009
[10] B. H. Dong, Z. W. Fu and J. S. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math., 2018, 61, 1807-1824. · Zbl 1401.42023
[11] X. T. Duong, M. Lacey, J. Li, B. D. Wick and Q. Y. Wu, Commutators of Cauchy-Szegő type integrals for domains in C n with minimal smoothness, In-diana Univ. Math. J., 2021, 70(4), 1505-1541. · Zbl 1476.30141
[12] Z. W. Fu, R. Gong, E. Pozzi and Q. Y. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 2023, 296(5), 1859-1885. · Zbl 1535.43008
[13] Z. W. Fu, L. Grafakos, Y. Lin, Y. Wu and S. H. Yang. Riesz transform as-sociated with the fractional Fourier transform and applications in image edge detection, Appl. Comput. Harmon. Anal., 2023, 66, 211-235. · Zbl 1518.42009
[14] Z. W. Fu, X. M. Hou, M. Y. Lee and J. Li, A study of one-sided Singular integral and function space via reproducing formula, J. Geom. Anal., 2023, 33, 289. · Zbl 1518.42023
[15] Z. W. Fu, S. Z. Lu, Y. Pan and S. G. Shi,Some one-sided estimates for oscil-latory singular integrals, Nonlinear Anal., 2014, 108(108), 144-160. · Zbl 1293.42013
[16] Z. W. Fu, E. Pozzi and Q. Y. Wu, Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions, Front. Math. China, 2021, 16(5), 1269-1296.
[17] R. M. Gong, M. N. Vempati, Q. Y. Wu and P. Z. Xie, Boundedness and com-pactness of Cauchy-type integral commutator on weighted Morrey spaces, J. Aust. Math. Soc., 2022, 113(1), 36-56. · Zbl 1492.42011
[18] L. Grafakos, Classic Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, New York, 2008. · Zbl 1220.42001
[19] A. P. Griǹko, Solution of a non-linear differential equation with a generalized fractional derivative, Dokl. Akad. Nauk BSSR, 1991, 35(1), 27-31. · Zbl 0732.34004
[20] L. F. Gu and Y. Y. Liu, The approximate solution of Riemann type problems for Dirac equations by Newton embedding method, J. Appl. Anal. Comput., 2020, 10, 326-334. · Zbl 1462.30100
[21] X. Guo and Z. W. Fu, An initial and boundary value problem of fractional Jeffreys’ fluid in a porous half spaces, Computers Math. Appl., 2019, 78(6), 1801-1810. · Zbl 1442.76110
[22] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006. · Zbl 1092.45003
[23] C. B. Morrey, On the solution of quasi-linear elliptic partial differential equa-tion, Trans. Amer. Math. Soc., 1938, 51(2), 126-166. · JFM 64.0460.02
[24] J. M. Ruan, Q. Y. Wu and D. S. Fan, Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group, Math. Inequal. Appl., 2019, 22(1), 307-329. · Zbl 1439.42033
[25] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publish-ers, Switzerland, 1993. · Zbl 0818.26003
[26] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math., 1930, 2, 171-180. · JFM 56.0355.01
[27] S. G. Shi and J. Xiao, A tracing of the fractional temperature field, Sci. China Math., 2017, 60(11), 2303-2320. · Zbl 1394.35209
[28] S. G. Shi and J. Xiao, Fractional capacities relative to bounded open Lipschitz sets complemented, Calc. Var. Partial Differential Equations, 2017, 56, 3. · Zbl 1362.31002
[29] S. G. Shi and J. Xiao, On fractional capacities relative to bounded open lipschitz sets, Potential Anal., 2016, 45(2), 261-298. · Zbl 1348.31001
[30] S. G. Shi and L. Zhang, Dual characterization of fractional capacity via solution of fractional p-Laplace equation, Math. Nachr., 2020, 293(11), 2233-2247. · Zbl 1527.35153
[31] S. G. Shi, L. Zhang and G. L. Wang, Fractional non-linear regularity, potential and balayage, J. Geom. Anal., 2022, 32, 221. · Zbl 1495.31014
[32] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993. · Zbl 0821.42001
[33] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. · Zbl 0207.13501
[34] Q. Y. Wu and D. S. Fan, Hardy space estimates of Hausdorff operators on the Heisenberg group, Nonlinear Anal., 2017, 164, 135-154. · Zbl 1515.47058
[35] Q. Y. Wu and Z. W. Fu, Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group, Banach J. Math. Anal., 2018, 12(4), 909-934. · Zbl 06946296
[36] M. H. Yang, Z. W. Fu and J. Y. Sun, Existence and large time behavior to cou-pled chemotaxis-fluid equations in Besov-Morrey spaces, J. Differential Equa-tions, 2019, 266, 5867-5894. · Zbl 1412.35351
[37] Y. N. Yang, Q. Y. Wu and S. T. Jhang, 2D linear canonical transforms on L p and applications, Fractal Fract., 2023, 7(12), 100.
[38] Y. N. Yang, Q. Y. Wu, S. T. Jhang and Q. Q. Kang, Approximation theorems associated with multidimensional fractional Fourier transform and applications in Laplace and heat equations, Fractal. Fract., 2022, 6(11), 625.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.