×

Matrix displacement convexity along density flows. (English) Zbl 07922985

Summary: A new notion of displacement convexity on a matrix level is developed for density flows arising from mean-field games, compressible Euler equations, entropic interpolation, and semi-classical limits of non-linear Schrödinger equations. Matrix displacement convexity is stronger than the classical notions of displacement convexity, and its verification (formal and rigorous) relies on matrix differential inequalities along the density flows. The matrical nature of these differential inequalities upgrades dimensional functional inequalities to their intrinsic dimensional counterparts, thus improving on many classical results. Applications include turnpike properties, evolution variational inequalities, and entropy growth bounds, which capture the behavior of the density flows along different directions in space.

MSC:

35Qxx Partial differential equations of mathematical physics and other areas of application
49Qxx Manifolds and measure-geometric topics
60Jxx Markov processes

References:

[1] Bakry, D.; Gentil, I.; Ledoux, M., Analysis and geometry of Markov diffusion operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2014, Cham: Springer, Cham · Zbl 1376.60002
[2] Benamou, J-D; Brenier, Y., A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, 375-393, 2000 · Zbl 0968.76069 · doi:10.1007/s002110050002
[3] Bialynicki-Birula, I.; Mycielski, J., Nonlinear wave mechanics, Ann. Phys., 100, 62-93, 1976 · doi:10.1016/0003-4916(76)90057-9
[4] Carles, R.: On the semi-classical limit for the nonlinear Schrödinger equation, Stationary and time dependent Gross-Pitaevskii equations, Contemp. Math., vol. 473, Amer. Math. Soc., Providence, RI, pp. 105-127, (2008) · Zbl 1166.35372
[5] Carles, R., Logarithmic Schrödinger equation and isothermal fluids, EMS Surv. Math. Sci., 9, 99-134, 2022 · Zbl 1528.35155 · doi:10.4171/emss/54
[6] Chen, Y.; Georgiou, TT; Pavon, M., On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint, J. Optim. Theory Appl., 169, 671-691, 2016 · Zbl 1344.49072 · doi:10.1007/s10957-015-0803-z
[7] Chen, Y.; Georgiou, TT; Pavon, M., Stochastic control liaisons: Richard Sinkhorn meets Gaspard Monge on a Schrödinger bridge, SIAM Rev., 63, 249-313, 2021 · Zbl 1465.49016 · doi:10.1137/20M1339982
[8] Clarke, SR; Miller, PD, On the semi-classical limit for the focusing nonlinear Schrödinger equation: sensitivity to analytic properties of the initial data, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458, 135-156, 2002 · Zbl 0997.35085 · doi:10.1098/rspa.2001.0862
[9] Clerc, G.; Conforti, G.; Gentil, I., Long-time Behaviour of Entropic Interpolations, Potential Anal., 59, 65-95, 2023 · Zbl 1521.49032 · doi:10.1007/s11118-021-09961-w
[10] Clerc, G., Conforti, G., Gentil, I.: On the variational interpretation of local logarithmic Sobolev inequalities, Annales de la Faculté des Sciences de Tolouse (To appear).
[11] Constantin, P.; Drivas, TD; Nguyen, HQ; Pasqualotto, F., Compressible fluids and active potentials, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 37, 145-180, 2020 · Zbl 1430.35185 · doi:10.1016/j.anihpc.2019.04.001
[12] Constantin, P.; Drivas, TD; Shvydkoy, R., Entropy hierarchies for equations of compressible fluids and self-organized dynamics, SIAM J. Math. Anal., 52, 3073-3092, 2020 · Zbl 1444.92139 · doi:10.1137/19M1278983
[13] Max, HM, Costa, A new entropy power inequality, IEEE Trans. Inform. Theory, 31, 751-760, 1985 · Zbl 0585.94006 · doi:10.1109/TIT.1985.1057105
[14] d’Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math.16, 1350032, 15, 2014 · Zbl 1292.35259
[15] Erbar, M.; Kuwada, K.; Sturm, K-T, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., 201, 993-1071, 2015 · Zbl 1329.53059 · doi:10.1007/s00222-014-0563-7
[16] Eskenazis, A., Shenfeld, Y.: Intrinsic dimensional functional inequalities on model spaces, arXiv preprint arXiv:2303.00784 (2023). · Zbl 1533.39017
[17] Faulwasser, T.; Grüne, L., Turnpike properties in optimal control: An overview of discrete-time and continuous-time results, Handb. Numer. Anal., 23, 367-400, 2022 · Zbl 1495.49019
[18] Ferriere, G., The focusing logarithmic Schrödinger equation: analysis of breathers and nonlinear superposition, Discrete Contin. Dyn. Syst., 40, 6247-6274, 2020 · Zbl 1508.35147 · doi:10.3934/dcds.2020277
[19] Gentil, I.; Léonard, C.; Ripani, L., About the analogy between optimal transport and minimal entropy, Ann. Fac. Sci. Toulouse Math., 26, 569-601, 2017 · Zbl 1380.49067 · doi:10.5802/afst.1546
[20] Geshkovski, B.; Zuazua, E., Turnpike in optimal control of PDEs, ResNets, and beyond, Acta Numer, 31, 135-263, 2022 · Zbl 07674581 · doi:10.1017/S0962492922000046
[21] Gianazza, U.; Savaré, G.; Toscani, G., The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal., 194, 133-220, 2009 · Zbl 1223.35264 · doi:10.1007/s00205-008-0186-5
[22] Gomes, D., Seneci, T.: Displacement convexity for first-order mean-field games, arXiv preprint arXiv:1807.07090 (2018). · Zbl 1419.91102
[23] Jameson Graber, P., Mészáros, A.R., Silva, Francisco J., Tonon, D.: The planning problem in mean field games as regularized mass transport. Calc. Var. Partial Differential Equations58, Paper No. 115, 28, (2019) · Zbl 1416.49045
[24] Grenier, E., Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., 126, 523-530, 1998 · Zbl 0910.35115 · doi:10.1090/S0002-9939-98-04164-1
[25] Huang, M.; Malhamé, RP; Caines, PE, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6, 221-251, 2006 · Zbl 1136.91349 · doi:10.4310/CIS.2006.v6.n3.a5
[26] Jordan, R.; Kinderlehrer, D.; Otto, F., The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1-17, 1998 · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[27] Kamvissis, S., McLaughlin, K.D. T.-R., Miller, P.D.: Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation, Annals of Mathematics Studies, vol. 154, Princeton University Press, Princeton, NJ, (2003). · Zbl 1057.35063
[28] Ketterer, C.; Mondino, A., Sectional and intermediate Ricci curvature lower bounds via optimal transport, Adv. Math., 329, 781-818, 2018 · Zbl 1387.53027 · doi:10.1016/j.aim.2018.01.024
[29] Khesin, B.; Misiołek, G.; Modin, K., Geometric hydrodynamics and infinite-dimensional Newton’s equations, Bull. Amer. Math. Soc. (N.S.), 58, 377-442, 2021 · Zbl 1473.35444 · doi:10.1090/bull/1728
[30] Kim, Y-H; Pass, B., Nonpositive curvature, the variance functional, and the Wasserstein barycenter, Proc. Amer. Math. Soc., 148, 1745-1756, 2020 · Zbl 1435.53031 · doi:10.1090/proc/14840
[31] Lasry, J-M; Lions, P-L, Mean field games, Jpn. J. Math., 2, 229-260, 2007 · Zbl 1156.91321 · doi:10.1007/s11537-007-0657-8
[32] Léonard, C.: On the convexity of the entropy along entropic interpolations, Measure theory in non-smooth spaces. Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw, pp. 194-242 (2017) · Zbl 1485.28018
[33] Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., 169, 903-991, 2009 · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[34] Robert, J., McCann, A convexity principle for interacting gases, Adv. Math., 128, 153-179, 1997 · Zbl 0901.49012 · doi:10.1006/aima.1997.1634
[35] Michel Petrovitch, M., Sur une manière d’étendre le théorème de la moyenne aux équations différentielles du premier ordre, Math. Ann., 54, 417-436, 1901 · JFM 32.0336.01 · doi:10.1007/BF01454261
[36] Milgrom, P.; Segal, I., Envelope theorems for arbitrary choice sets, Econometrica, 70, 583-601, 2002 · Zbl 1103.90400 · doi:10.1111/1468-0262.00296
[37] Peter, D., Miller and Spyridon Kamvissis, On the semiclassical limit of the focusing nonlinear Schrödinger equation, Phys. Lett. A, 247, 75-86, 1998 · Zbl 0941.81029 · doi:10.1016/S0375-9601(98)00565-9
[38] Otto, F., Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory, Arch. Ration. Mech. Anal., 141, 63-103, 1998 · Zbl 0905.35068 · doi:10.1007/s002050050073
[39] Porretta, A., Regularizing effects of the entropy functional in optimal transport and planning problems, J. Funct. Anal., 284, 2023 · Zbl 1506.35090 · doi:10.1016/j.jfa.2022.109759
[40] Ripani, L., Convexity and regularity properties for entropic interpolations, J. Funct. Anal., 277, 368-391, 2019 · Zbl 1465.60069 · doi:10.1016/j.jfa.2019.04.004
[41] Sturm, K-T, On the geometry of metric measure spaces. I, Acta Math., 196, 65-131, 2006 · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[42] Sturm, K-T, On the geometry of metric measure spaces. II, Acta Math., 196, 133-177, 2006 · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[43] Villani, C., Topics in Optimal Transportation, Graduate Studies in Mathematics, 2003, Providence, RI: American Mathematical Society, Providence, RI · Zbl 1106.90001
[44] von Renesse, M-K, An optimal transport view of Schrödinger’s equation, Canad. Math. Bull., 55, 858-869, 2012 · Zbl 1256.81072 · doi:10.4153/CMB-2011-121-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.