×

Parabolic boundary Harnack inequalities with right-hand side. (English) Zbl 07922984

Summary: We prove the parabolic boundary Harnack inequality in parabolic flat Lipschitz domains by blow-up techniques, allowing, for the first time, a non-zero right-hand side. Our method allows us to treat solutions to equations driven by non-divergence form operators with bounded measurable coefficients, and a right-hand side \(f \in L^q\) for \(q > n+2\). In the case of the heat equation, we also show the optimal \(C^{1-\varepsilon}\) regularity of the quotient. As a corollary, we obtain a new way to prove that flat Lipschitz free boundaries are \(C^{1,\alpha}\) in the parabolic obstacle problem and in the parabolic Signorini problem.

MSC:

35Bxx Qualitative properties of solutions to partial differential equations
35Jxx Elliptic equations and elliptic systems
35Kxx Parabolic equations and parabolic systems

References:

[1] Andersson, J.; Lindgren, E.; Shahgholian, H., Optimal regularity for the parabolic no-sign obstacle type problem, Interfaces Free Bound., 15, 477-499, 2013 · Zbl 1286.35270 · doi:10.4171/ifb/311
[2] Athanasopoulos, I.; Caffarelli, L., A theorem of real analysis and its application to free boundary problems, Commun. Pure Appl. Math., 38, 499-502, 1985 · Zbl 0593.35084 · doi:10.1002/cpa.3160380503
[3] Athanasopoulos, I.; Caffarelli, L.; Salsa, S., Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143, 413-434, 1996 · Zbl 0853.35049 · doi:10.2307/2118531
[4] Allen, M.; Shahgholian, H., A new boundary Harnack principle (equations with right-hand side), Arch. Ration. Mech. Anal., 234, 1413-1444, 2019 · Zbl 1433.35013 · doi:10.1007/s00205-019-01415-3
[5] Allen, M.; Kriventsov, D.; Shahgholian, H., The inhomogeneous boundary Harnack principle for fully nonlinear and p-Laplace equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 40, 133-156, 2022 · Zbl 1516.35128 · doi:10.4171/aihpc/40
[6] Audrito, A.; Kukuljan, T., Regularity theory for fully nonlinear parabolic obstacle problems, J. Funct. Anal., 285, 2023 · Zbl 1526.35093 · doi:10.1016/j.jfa.2023.110116
[7] Banerjee, A.; Smit Vega García, M.; Zeller, A., Higher regularity of the free boundary in the parabolic Signorini problem, Calc. Var. Partial Differ. Equ., 56, 7, 2017 · Zbl 1371.35359 · doi:10.1007/s00526-016-1103-7
[8] Barrios, B.; Figalli, A.; Ros-Oton, X., Free boundary regularity in the parabolic fractional obstacle problem, Comm. Pure Appl. Math., 71, 2129-2159, 2018 · Zbl 1420.35428 · doi:10.1002/cpa.21745
[9] Bass, R.; Burdzy, K., Lifetimes of conditioned diffusions, Probab. Theory Relat. Fields, 91, 405-443, 1992 · doi:10.1007/BF01192065
[10] Bass, R.; Burdzy, K., The boundary Harnack principle for non-divergence form elliptic operators, J. Lond. Math. Soc., 50, 157-169, 1994 · Zbl 0806.35025 · doi:10.1112/jlms/50.1.157
[11] Besov, O.; Ilin, V.; Nikolskii, S., Integral Representations of Functions and Embedding Theorems, 1978, Hoboken: Wiley, Hoboken · Zbl 0392.46022
[12] Blank, I., Sharp results for the regularity and stability of the free boundary in the obstacle problem, Indiana Univ. Math. J., 50, 1077-1112, 2001 · Zbl 1032.35170 · doi:10.1512/iumj.2001.50.1906
[13] Braga, J.; Moreira, D., Inhomogeneous Hopf-Oleinik Lemma and regularity of semiconvex supersolutions via new barriers for the Pucci extremal operators, Adv. Math., 334, 184-242, 2018 · Zbl 1395.35059 · doi:10.1016/j.aim.2018.05.001
[14] Caffarelli, L., The regularity of free boundaries in higher dimensions, Acta Math., 139, 155-184, 1977 · Zbl 0386.35046 · doi:10.1007/BF02392236
[15] Caffarelli, L.; Cabré, X., Fully nonlinear elliptic equations, Am. Math. Soc. Colloq. Publ., 43, 1995, 1995 · Zbl 0834.35002
[16] Caffarelli, L.; Fabes, E.; Mortola, S.; Salsa, S., Boundary behavior of non-negative solutions of elliptic operators in divergence form, Indiana Math. J., 30, 621-640, 1981 · Zbl 0512.35038 · doi:10.1512/iumj.1981.30.30049
[17] Caffarelli, L.; Petrosyan, A.; Shahgholian, H., Regularity of a free boundary in parabolic potential theory, J. Am. Math. Soc., 17, 827-869, 2004 · Zbl 1054.35142 · doi:10.1090/S0894-0347-04-00466-7
[18] Caffarelli, L.; Salsa, S., A Geometric Approach To Free Boundary Problems, 2005, Washington: American Mathematical Society, Washington · Zbl 1083.35001 · doi:10.1090/gsm/068
[19] Colombo, M., Fernández-Real, X., Ros-Oton, X.: Optimal regularity for the fully nonlinear thin obstacle problem. J. Eur. Math. Soc., 2024
[20] Crandall, M.; Kocan, M.; Swiech, A., \(L^p\) theory for fully nonlinear uniformly parabolic equations, Comm. Partial Differ. Equ., 25, 1997-2053, 2000 · Zbl 0973.35097 · doi:10.1080/03605300008821576
[21] Danielli, D.; Garofalo, N.; Petrosyan, A.; To, T., Optimal regularity and the free boundary in the parabolic Signorini problem, Mem. Am. Math. Soc., 249, 1181, v + 103, 2017 · Zbl 1381.35249
[22] De Silva, D.; Savin, O., A note on higher regularity boundary Harnack inequality, Disc. Cont. Dyn. Syst., 35, 6155-6163, 2015 · Zbl 1336.35096 · doi:10.3934/dcds.2015.35.6155
[23] De Silva, D.; Savin, O., A short proof of boundary Harnack inequality, J. Differ. Equ., 269, 2419-2429, 2020 · Zbl 1439.35110 · doi:10.1016/j.jde.2020.02.004
[24] De Silva, D.; Savin, O., On the boundary Harnack principle in Hölder domains, Math. Eng., 4, 1-12, 2022 · Zbl 1496.35114 · doi:10.3934/mine.2022004
[25] De Silva, D.; Savin, O., On the parabolic boundary Harnack principle, La Matematica, 1, 1-18, 2022 · doi:10.1007/s44007-021-00001-y
[26] Fabes, E.; Garofalo, N.; Marin-Malave, S.; Salsa, S., Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana, 4, 227-252, 1988 · Zbl 0703.35058 · doi:10.4171/rmi/73
[27] Fabes, E.; Garofalo, N.; Salsa, S., A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math., 30, 536-565, 1986 · Zbl 0625.35006 · doi:10.1215/ijm/1256064230
[28] Fabes, E.; Safonov, M., Behavior near the boundary of positive solutions of second order parabolic equations, J. Fourier Anal. Appl., 3, 871-882, 1997 · Zbl 0939.35082 · doi:10.1007/BF02656492
[29] Fabes, E.; Safonov, M.; Yuan, Y., Behavior near the boundary of positive solutions of second order parabolic equations, Trans. Am. Math. Soc., 351, 4947-4961, 1999 · Zbl 0976.35031 · doi:10.1090/S0002-9947-99-02487-3
[30] Fernández-Real, X.; Ros-Oton, X., Regularity theory or general stable operators: parabolic equations, J. Funct. Anal., 272, 4165-4221, 2017 · Zbl 1372.35058 · doi:10.1016/j.jfa.2017.02.015
[31] Fernández-Real, X.; Ros-Oton, X., Regularity Theory for Elliptic PDE, 2022, EMS Press · Zbl 1522.35001 · doi:10.4171/zlam/28
[32] Figalli, A.; Ros-Oton, X.; Serra, J., The singular set in the Stefan problem, J. Am. Math. Soc., 37, 305-389, 2024 · Zbl 1532.35542 · doi:10.1090/jams/1026
[33] Figalli, A.; Shahgholian, H., A general class of free boundary problems for fully nonlinear parabolic equations, Ann. Mat. Pura Appl., 194, 1123-1134, 2015 · Zbl 1338.35508 · doi:10.1007/s10231-014-0413-7
[34] Hofmann, S.; Lewis, J.; Nyström, K., Caloric measure in parabolic flat domains, Duke Math. J., 122, 281-346, 2004 · Zbl 1074.35041 · doi:10.1215/S0012-7094-04-12222-5
[35] Indrei, E.; Minne, A., Regularity of solutions to fully nonlinear elliptic and parabolic free boundary problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 1259-1277, 2016 · Zbl 1352.35044 · doi:10.1016/j.anihpc.2015.03.009
[36] Jerison, D.; Kenig, C., Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math., 46, 80-147, 1982 · Zbl 0514.31003 · doi:10.1016/0001-8708(82)90055-X
[37] Kemper, J., A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Commun. Pure Appl. Math., 25, 247-255, 1972 · Zbl 0226.31007 · doi:10.1002/cpa.3160250303
[38] Kemper, J., Temperatures in several variables: kernel functions, representations, and parabolic boundary values, Trans. Am. Math. Soc., 167, 243-262, 1972 · Zbl 0238.35039 · doi:10.1090/S0002-9947-1972-0294903-6
[39] Krylov, N., Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation, Sib. Math. J., 17, 226-236, 1976 · Zbl 0362.35038 · doi:10.1007/BF00967569
[40] Kukuljan, T., Higher order parabolic boundary Harnack inequality in \(C^1\) and \(C^{k,\alpha }\) domains, Discret Contin. Dyn. Syst., 42, 2667-2698, 2022 · Zbl 1490.35061 · doi:10.3934/dcds.2021207
[41] Lian, Y.; Zhang, K., Boundary Lipschitz regularity and the Hopf lemma for fully nonlinear elliptic equations, Potential Anal., 60, 1231-1247, 2023 · Zbl 07815304 · doi:10.1007/s11118-023-10085-6
[42] Lieberman, M., Regularized distance and its applications, Pac. J. Math., 117, 329-352, 1985 · doi:10.2140/pjm.1985.117.329
[43] Lieberman, M., Second Order Parabolic Differential Equations, 1996, Singapore: World Scientific Publishing Co. Pte. Ltd., Singapore · Zbl 0884.35001 · doi:10.1142/3302
[44] Petrosyan, A.; Shahgholian, H.; Uraltseva, N., Regularity of Free Boundaries in Obstacle-Type Problems, 2012, Washington: American Mathematical Society, Washington · Zbl 1254.35001 · doi:10.1090/gsm/136
[45] Petrosyan, A.; Shi, W., Parabolic boundary Harnack principles in domains with thin Lipschitz complement, Anal. PDE, 7, 1421-1463, 2014 · Zbl 1304.35374 · doi:10.2140/apde.2014.7.1421
[46] Petrosyan, A.; Zeller, A., Boundedness and continuity of the time derivative in the parabolic Signorini problem, Math. Res. Lett., 26, 281-292, 2019 · Zbl 1412.35185 · doi:10.4310/MRL.2019.v26.n1.a13
[47] Ros-Oton, X.; Serra, J., Boundary regularity estimates for nonlocal elliptic equations in \(C^1\) and \(C^{1,\alpha }\) domains, Ann. Mat. Pura Appl., 196, 1637-1668, 2017 · Zbl 1379.35088 · doi:10.1007/s10231-016-0632-1
[48] Ros-Oton, X.; Serra, J., The structure of the free boundary in the fully nonlinear thin obstacle problem, Adv. Math., 316, 710-747, 2017 · Zbl 1371.35365 · doi:10.1016/j.aim.2017.06.032
[49] Ros-Oton, X.; Torres-Latorre, C., New boundary Harnack inequalities with right-hand side, J. Differ. Equ., 288, 204-249, 2021 · Zbl 1465.35080 · doi:10.1016/j.jde.2021.04.012
[50] Salsa, S., Some properties of nonnegative solutions of parabolic differential operators, Ann. Mat. Pura Appl., 128, 193-206, 1981 · Zbl 0477.35049 · doi:10.1007/BF01789473
[51] Tso, K., On an Aleksandrov-Bakel’Man type maximum principle for second-order parabolic equations, Commun. Partial Differ. Equ., 10, 543-553, 1985 · Zbl 0581.35027 · doi:10.1080/03605308508820388
[52] Wang, L., On the regularity theory of fully nonlinear parabolic equations: I, Commun. Pure Appl. Math., 45, 27-76, 1992 · Zbl 0832.35025 · doi:10.1002/cpa.3160450103
[53] Wang, L., On the regularity theory of fully nonlinear parabolic equations: II, Commun. Pure Appl. Math., 45, 141-178, 1992 · Zbl 0774.35042 · doi:10.1002/cpa.3160450202
[54] Wang, L., A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.), 19, 381-396, 2003 · Zbl 1026.31003 · doi:10.1007/s10114-003-0264-4
[55] Wu, Z.; Yin, J.; Wang, C., Elliptic and Parabolic Equations, 2006, Singapore: World Scientific Publishing Co. Pte. Ltd., Singapore · Zbl 1108.35001 · doi:10.1142/6238
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.