×

Computational algorithms for solving optimal control in linear elasticity. (English) Zbl 07922750

Summary: This paper mainly investigates linear elastic optimal control problems with two constraints: distributed load control and boundary load control. The gradient of the objective functional is derived via an adjoint problem. We obtain the \(\boldsymbol{H^1}\)-regularity for the distributed control solution. Moreover, we establish a suitable finite element interpolation to deal with the non-optimal regularity of the boundary control solution. The error estimates for the fully discretized problems is given. Then, together with the interior point method, a new numerical method for the optimal control of linear elasticity is exhibited. Finally, the effectiveness of presented scheme is demonstrated by various numerical simulations in two and three-space dimensions.

MSC:

49M41 PDE constrained optimization (numerical aspects)
49N10 Linear-quadratic optimal control problems
74B05 Classical linear elasticity
65-XX Numerical analysis
90C51 Interior-point methods

Software:

FreeFem++
Full Text: DOI

References:

[1] Wang, M-Z; Xu, B-X; Gao, C-F, Recent general solutions in linear elasticity and their applications, Appl. Mech. Rev., 61, 3, 2008 · Zbl 1146.74306 · doi:10.1115/1.2909607
[2] Altenbach, H.; Eremeyev, VA; Lebedev, LP, On the existence of solution in the linear elasticity with surface stresses, Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 90, 3, 231-240, 2010 · Zbl 1355.74014 · doi:10.1002/zamm.200900311
[3] Bonnaillie-Noël, V.; Dambrine, M.; Hérau, F.; Vial, G., Artificial conditions for the linear elasticity equations, Math. Comput., 84, 294, 1599-1632, 2015 · Zbl 1321.35040 · doi:10.1090/S0025-5718-2014-02901-3
[4] Matevossian, HA, Mixed boundary value problems for the elasticity system in exterior domains, Math. Comput. Appl., 24, 2, 58, 2019 · doi:10.3390/mca24020058
[5] Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Grundlehren Der Mathematishen Wissenschaften 170. Springer, Heidelberg (1971)
[6] Aziz, A.K., Wingate, J.W., Balas, M.J.: Control Theory of Systems Governed by Partial Differential Equations. Academic Press Inc, New York (1977). doi:10.1016/C2013-0-07167-8 · Zbl 0409.00018
[7] Leugering, G., Engell, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M., Ulbrich, S. (eds.): Constrained Optimization and Optimal Control for Partial Differential Equations. International series of numerical mathematics 160, vol. 160. Birkhäuser, Basel (2012). doi:10.1007/978-3-0348-0133-1 · Zbl 1231.49001
[8] Tröltzsch, F., Optimal Control of Partial Differential Equations, 2010, Rhode Island: American Mathematical Society, Rhode Island · Zbl 1195.49001
[9] Gruver, WA; Sachs, EW, Algorithmic Methods in Optimal Control, 1980, London, Lanham: Pitman, London, Lanham
[10] Kelley, C.T.: Iterative Methods for Optimization. Society for Industrial and Applied Mathematics, Philadelphia (1999). doi:10.1137/1.9781611970920 · Zbl 0934.90082
[11] Manzoni, A., Quarteroni, A., Salsa, S.: Optimal Control of Partial Differential Equations. Springer, Switzerland AG (2021). doi:10.1007/978-3-030-77226-0 · Zbl 1483.49001
[12] Bergounioux, M.; Ito, K.; Kunisch, K., Primal-dual strategy for constrained optimal control problems, SIAM J. Control. Optim., 37, 4, 1176-1194, 1999 · Zbl 0937.49017 · doi:10.1137/S0363012997328609
[13] Kunisch, K.; Rösch, A., Primal-dual active set strategy for a general class of constrained optimal control problems, SIAM J. Optim., 13, 2, 321-334, 2002 · Zbl 1028.49027 · doi:10.1137/S1052623499358008
[14] Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2008). doi:10.1137/1.9780898718614 · Zbl 1156.49002
[15] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications. Springer, Dordrecht (2009). doi:10.1007/978-1-4020-8839-1 · Zbl 1167.49001
[16] Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 13(4), 313-328 (1979). doi:10.1051/m2an/1979130403131 · Zbl 0426.65067
[17] Casas, E., Tröltzsch, F.: Error estimates for linear-quadratic elliptic control problems. In: Barbu, V., Lasiecka, I., Tiba, D., Varsan, C. (eds.) Analysis and Optimization of Differential Systems, pp. 89-100. Springer, Boston (2003). doi:10.1007/978-0-387-35690-7_10 · Zbl 1027.65088
[18] Hinze, M., A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30, 1, 45-61, 2005 · Zbl 1074.65069 · doi:10.1007/s10589-005-4559-5
[19] Arada, N.; Casas, E.; Tröltzsch, F., Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23, 2, 201-229, 2002 · Zbl 1033.65044 · doi:10.1023/A:1020576801966
[20] Casas, E.; Mateos, M., Uniform convergence of the fem. applications to state constrained control problems, Comput. Appl. Math., 21, 1, 67-100, 2002 · Zbl 1119.49309
[21] Casas, E.; Mateos, M.; Tröltzsch, F., Error estimates for the numerical approximation of boundary semilinear elliptic control problems, Comput. Optim. Appl., 31, 2, 193-219, 2005 · Zbl 1081.49023 · doi:10.1007/s10589-005-2180-2
[22] Guan, H.; Yang, Y.; Zhu, H., A locking-free nonconforming FEM for optimal control problems governed by linear elasticity equations, J. Comput. Appl. Math., 413, 2022 · Zbl 1489.65160 · doi:10.1016/j.cam.2022.114299
[23] Scott, LR; Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput., 54, 190, 483-493, 1990 · Zbl 0696.65007 · doi:10.2307/2008497
[24] Borzì, A.; Schulz, V., Multigrid methods for PDE optimization, SIAM Rev., 51, 2, 361-395, 2009 · Zbl 1167.35354 · doi:10.1137/060671590
[25] Herzog, R.; Kunisch, K., Algorithms for PDE-constrained optimization, GAMM-Mitteilungen, 33, 2, 163-176, 2010 · Zbl 1207.49034 · doi:10.1002/gamm.201010013
[26] Wächter, A.; Biegler, L., On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106, 25-57, 2006 · Zbl 1134.90542 · doi:10.1007/s10107-004-0559-y
[27] Rincon, M.; Liu, I-S, On numerical approximation of an optimal control problem in linear elasticity, Divulgaciones Matemáticas, 11, 2, 91-107, 2003 · Zbl 1058.49027
[28] Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory, 2007, Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511618635
[29] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. Springer, New York (1990). doi:10.1007/978-1-4612-0985-0 · Zbl 0684.47029
[30] Porner, F.; Wachsmuth, D., Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations, Mathematical Control & Related Fields, 8, 1, 315-335, 2018 · Zbl 1407.49031 · doi:10.3934/mcrf.2018013
[31] Pörner, F.: Regularization methods for ill-posed optimal control problems. doctoralthesis, Würzburg University, Würzburg (2018)
[32] Ern, A., Guermond, J.-L.: Finite Elements II. Texts in Applied Mathematics, vol. 73. Springer, Switzerland AG (2021). doi:10.1007/978-3-030-56923-5 · Zbl 1476.65002
[33] Em, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004). doi:10.1007/978-1-4757-4355-5 · Zbl 1059.65103
[34] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Classics in applied mathematics 31. Society for Industrial and Applied Mathematics, Philadelphia (1987). doi:10.1137/1.9780898719451 · Zbl 0988.49003
[35] Meyer, C.; Rösch, A., Superconvergence properties of optimal control problems, SIAM J. Control. Optim., 43, 3, 970-985, 2004 · Zbl 1071.49023 · doi:10.1137/S0363012903431608
[36] Larson, M.G., Bengzon, F.: The Finite Element Method: Theory, Implementation, and Applications. Texts in Computational Science and Engineering 10. Springer, Heidelberg (2013). doi:10.1007/978-3-642-33287-6 · Zbl 1263.65116
[37] Ciarlet, P.G., Lions, J.L.: Handbook of Numerical Analysis. Finite Element Methods (Part 1). Handbook of Numerical Analysis. Elsevier, North-Holland (1990) · Zbl 0689.65001
[38] Wächter, A.: An interior point algorithm for large-scale nonlinear optimization with applications in process engineering. Phd dissertation, Carnegie Mellon University, Pittsburgh (2002)
[39] Nocedal, J.; Wächter, A.; Waltz, RA, Adaptive barrier update strategies for nonlinear interior methods, SIAM J. Optim., 19, 4, 1674-1693, 2009 · Zbl 1176.49036 · doi:10.1137/060649513
[40] Wright, S.J.: Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathematics, Philadelphia (1997). doi:10.1137/1.9781611971453 · Zbl 0863.65031
[41] Gondzio, J., Interior point methods 25 years later, Eur. J. Oper. Res., 218, 3, 587-601, 2012 · Zbl 1244.90007 · doi:10.1016/j.ejor.2011.09.017
[42] Ulbrich, M.; Ulbrich, S., Primal-dual interior-point methods for pde-constrained optimization, Math. Program., 117, 1-2, 435-485, 2007 · Zbl 1171.90018 · doi:10.1007/s10107-007-0168-7
[43] Pearson, JW; Gondzio, J., Fast interior point solution of quadratic programming problems arising from pde-constrained optimization, Numer. Math., 137, 4, 959-999, 2017 · Zbl 1379.65042 · doi:10.1007/s00211-017-0892-8
[44] Forsgren, A.; Gill, P.; Wright, M., Interior methods for nonlinear optimization, SIAM Rev., 44, 4, 525-597, 2002 · Zbl 1028.90060 · doi:10.1137/S0036144502414942
[45] Heinkenschloss, M.; Vicente, LN, Analysis of inexact trust-region SQP algorithms, SIAM J. Optim., 12, 2, 283-302, 2002 · Zbl 1035.90104 · doi:10.1137/s1052623499361543
[46] Savaré, G., Regularity and perturbation results for mixed second order elliptic problems, Comm. Partial Differential Equations, 22, 5-6, 869-899, 1997 · Zbl 0881.35020 · doi:10.1080/03605309708821287
[47] Berggren, M., Approximations of very weak solutions to boundary-value problems, SIAM J. Numer. Anal., 42, 2, 860-877, 2004 · Zbl 1159.65355 · doi:10.1137/s0036142903382048
[48] Ciarlet, P.: Analysis of the scott-zhang interpolation in the fractional order sobolev spaces. J. Numer. Math. 21(3) (2013). doi:10.1515/jnum-2013-0007 · Zbl 1457.65190
[49] Hecht, F., Pironneau, O., Hyaric, A.L., Ohtsuka, K.: Freefem \(+\) manual. J. Numer. Math. 20 (2012)
[50] Hecht, F., New development in freefem \(+\), J. Numer. Math., 20, 3-4, 251-265, 2012 · Zbl 1266.68090
[51] Haslinger, J.; Neittaanmäki, P., Finite element approximation for optimal shape design, theory and applications, Math. Comput. Simul., 31, 3, 284, 1989 · doi:10.1016/0378-4754(89)90167-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.