×

On the Pohozaev identity for the fractional \(p\)-Laplacian operator in \(\mathbb{R}^N\). (English) Zbl 07922700

Summary: In this paper, we show the existence of a nontrivial weak solution for a nonlinear problem involving the fractional \(p\)-Laplacian operator and a Berestycki-Lions type nonlinearity. This solution satisfies a Pohozaev identity. Moreover, we prove that any sufficiently smooth solution fulfills the Pohozaev identity.
© 2024 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

MSC:

35A15 Variational methods applied to PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35R11 Fractional partial differential equations

References:

[1] F. J.Almgren Jr and E. H.Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc.2 (1989), no. 4, 683-773. · Zbl 0688.46014
[2] V.Ambrosio, Nonlinear fractional Schrödinger equations in \(\mathbb{R}^N\), Frontiers in Elliptic and Parabolic Problems, Birkhäuser/Springer, Cham, 2021, xvii+662 pp. · Zbl 1472.35003
[3] V.Ambrosio, On the uniform vanishing property at infinity of \(W^{s,p}\)‐sequences, Nonlinear Anal.238 (2024), Paper no. 113398, 17 pp. · Zbl 1537.46026
[4] V.Ambrosio and T.Isernia, Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional \(p\)‐Laplacian, Discrete Contin. Dyn. Syst.38 (2018), no. 11, 5835-5881. · Zbl 06951275
[5] F.Andreu, J. M.Mazón, J. D.Rossi, and J.Toledo, A nonlocal \(p\)‐Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal.40 (2008/09), no. 5, 1815-1851. · Zbl 1183.35034
[6] H.Berestycki and P.‐L.Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.82 (1983), no. 4, 313-345. · Zbl 0533.35029
[7] L.Brasco, E.Lindgren, and A.Schikorra, Higher Hölder regularity for the fractional \(p\)‐Laplacian in the superquadratic case, Adv. Math.338 (2018), 782-846. · Zbl 1400.35049
[8] E.Brüning, On the variational approach to semilinear elliptic equations with scale‐covariance, J. Differential Equations83 (1990), no. 1, 109-144. · Zbl 0701.35065
[9] L.Caffarelli and L.Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations32 (2007), no. 7-9, 1245-1260. · Zbl 1143.26002
[10] J.Chabrowski, Variational methods for potential operator equations. With applications to nonlinear elliptic equations, De Gruyter Studies in Mathematics, vol. 24, Walter de Gruyter & Co., Berlin, 1997, x+290 pp. · Zbl 1157.35338
[11] X.Chang and Z.‐Q.Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity26 (2013), no. 2, 479-494. · Zbl 1276.35080
[12] W.Chen and C.Li, Maximum principles for the fractional \(p\)‐Laplacian and symmetry of solutions, Adv. Math.335 (2018), 735-758. · Zbl 1395.35055
[13] C.De Filippis and G.Mingione, Gradient regularity in mixed local and nonlocal problems, Math. Ann.388 (2024), no. 1, 261-328. · Zbl 1532.49035
[14] M.Degiovanni, A.Musesti, and M.Squassina, On the regularity of solutions in the Pucci‐Serrin identity, Calc. Var. Partial Differential Equations18 (2003), no. 3, 317-334. · Zbl 1046.35039
[15] L. M.Del Pezzo and A.Quaas, A Hopf’s lemma and a strong minimum principle for the fractional \(p\)‐Laplacian, J. Differential Equations263 (2017), no. 1, 765-778. · Zbl 1362.35061
[16] F.delTeso, D.Gómez‐Castro, and J. L.Vázquez, Three representations of the fractional p‐Laplacian: semigroup, extension and Balakrishnan formulas, Fract. Calc. Appl. Anal.24 (2021), no. 4, 966-1002. · Zbl 1498.35570
[17] E.Di Nezza, G.Palatucci, and E.Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math.136 (2012), no. 5, 521-573. · Zbl 1252.46023
[18] S. M.Djitte, M. M.Fall, and T.Weth, A fractional Hadamard formula and applications, Calc. Var. Partial Differential Equations60 (2021), no. 6, Paper no. 231, 31 pp. · Zbl 1476.49051
[19] M.Guedda and L.Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal.13 (1989), no. 8, 879-902. · Zbl 0714.35032
[20] A.Iannizzotto, S.Mosconi, and M.Squassina, Global Hölder regularity for the fractional \(p\)‐Laplacian, Rev. Mat. Iberoam.32 (2016), no. 4, 1353-1392. · Zbl 1433.35447
[21] H.Ishii and G.Nakamura, A class of integral equations and approximation of \(p\)‐Laplace equations, Calc. Var. Partial Differential Equations37 (2010), no. 3-4, 485-522. · Zbl 1198.45005
[22] P.‐L.Lions, Symétrie et compacité dans les espaces de Sobolev, J. Functional Analysis49 (1982), no. 3, 315-334. · Zbl 0501.46032
[23] P.Pucci and J.Serrin, A general variational identity, Indiana Univ. Math. J.35 (1986), no. 3, 681-703. · Zbl 0625.35027
[24] X.Ros‐Oton and J.Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal.213 (2014), no. 2, 587-628. · Zbl 1361.35199
[25] J.Simon, Régularité de la solution d’un problème aux limites non linéaires, Ann. Fac. Sci. Toulouse Math.3 (1981), 247-274. · Zbl 0487.35015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.